Suppr超能文献

Structure-activity relationships for activation of adenylate cyclase by the diterpene forskolin and its derivatives.

作者信息

Seamon K B, Daly J W, Metzger H, de Souza N J, Reden J

出版信息

J Med Chem. 1983 Mar;26(3):436-9. doi: 10.1021/jm00357a021.

Abstract

Forskolin (7 beta-acetoxy-8,13-epoxy-1 alpha, 6 beta, 9 alpha-trihydroxylabd-14-en-11-one), a diterpene from the Indian plant Coleus forskohlii, activates cyclic AMP generating systems in a number of mammalian tissues in a rapid and reversible fashion. Derivatives of forskolin have been tested for their ability to stimulate membrane adenylate cyclase from rat brain and rabbit heart, as well as cyclic AMP generation in guinea pig brain vesicular preparations, a model system for intact cells. Derivatives at the 6 beta- and 7 beta-hydroxy functions retain activity, but none have greater activity than that of forskolin. Reduction of the 11-keto function affords an active 11 beta-hydroxy derivative. Reduction of the 14,15-vinyl (alpha) substituent reduces activity, while epoxidation abolishes activity. Derivatization or lack of the 1 alpha- and 9 alpha-hydroxy functions results in a marked reduction in activity, emphasizing the importance of the alpha aspect of the molecule. However, the 1 alpha, 6 beta-di-O-acetyl derivative does retain activity. None of the inactive derivatives, which include the 14,15-epoxy, the 1,9-dideoxy, and the 1,6-diketo derivatives, antagonize the stimulatory effects of forskolin.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验