Suppr超能文献

核小体中的DNA-组蛋白相互作用。

DNA-histone interactions in nucleosomes.

作者信息

Van Holde K E, Allen J R, Tatchell K, Weischet W O, Lohr D

出版信息

Biophys J. 1980 Oct;32(1):271-82. doi: 10.1016/S0006-3495(80)84956-3.

Abstract

We have utilized micrococcal nuclease digestion and thermal denaturation studies to investigate the binding of DNA to the histone core of the nucleosome. We conclude that a total of approximately 168 base pairs (bp) of DNA can interact with the histone core under appropriate solution conditions, even in the absence of lysine-rich histones. The interactions in this total length of DNA can be divided into three classes: (a) approximately 22 bp at the ends is bound only at moderate ionic strength. It is easily displaced, and its removal yields the 146 bp core particle. (b) approximately 46 bp near the ends of the core DNA are quite weakly bound to the core, and are displaced at quite moderate temperatures. (c) The remaining central 100 bp are strongly bound, and interact with all of the sites on the histones which strongly protect DNA against DNAse I digestion. A theoretical analysis of the cleavage of nucleosomal DNA by DNAse I has been used to develop evidence that the pattern of protection offered by the histone core is very similar in nuclei to that in isolated core particles.

摘要

我们利用微球菌核酸酶消化和热变性研究来探究DNA与核小体组蛋白核心的结合情况。我们得出结论,即使在没有富含赖氨酸组蛋白的情况下,在适当的溶液条件下,总共约168个碱基对(bp)的DNA能够与组蛋白核心相互作用。这段DNA全长中的相互作用可分为三类:(a)两端约22 bp仅在中等离子强度下结合。它很容易被取代,去除它会产生146 bp的核心颗粒。(b)核心DNA末端附近约46 bp与核心的结合非常弱,在相当适中的温度下会被取代。(c)其余中间的100 bp结合紧密,并与组蛋白上所有能强烈保护DNA免受DNA酶I消化的位点相互作用。对DNA酶I切割核小体DNA的理论分析已被用于提供证据,表明组蛋白核心提供的保护模式在细胞核中与在分离的核心颗粒中非常相似。

相似文献

1
DNA-histone interactions in nucleosomes.
Biophys J. 1980 Oct;32(1):271-82. doi: 10.1016/S0006-3495(80)84956-3.
3
Structure of nucleosomes and organization of internucleosomal DNA in chromatin.
J Mol Biol. 1990 Apr 5;212(3):495-511. doi: 10.1016/0022-2836(90)90328-J.
5
Novel nucleosomal particles containing core histones and linker DNA but no histone H1.
Nucleic Acids Res. 2016 Jan 29;44(2):573-81. doi: 10.1093/nar/gkv943. Epub 2015 Sep 22.
6
Structure of nucleosome core particles containing uH2A (A24).
Nucleic Acids Res. 1981 Jun 11;9(11):2423-31. doi: 10.1093/nar/9.11.2423.
7
The structure of sub-nucleosomal particles. The octameric (H3/H4)4--125-base-pair-DNA complex.
Eur J Biochem. 1985 Oct 1;152(1):143-50. doi: 10.1111/j.1432-1033.1985.tb09174.x.
8
Structural analysis of a reconstituted DNA containing three histone octamers and histone H5.
J Mol Biol. 1987 Oct 5;197(3):485-511. doi: 10.1016/0022-2836(87)90560-2.
10
Self-assembly of single and closely spaced nucleosome core particles.
Nucleic Acids Res. 1980 Jan 11;8(1):21-42. doi: 10.1093/nar/8.1.21.

引用本文的文献

1
Impact of swabbing solutions on the recovery of biological material from non-porous surfaces.
Forensic Sci Int Synerg. 2024 Aug 27;9:100551. doi: 10.1016/j.fsisyn.2024.100551. eCollection 2024.
2
Effects of exogenous deoxyribonuclease I in collagen antibody-induced arthritis.
J Inflamm (Lond). 2024 Sep 9;21(1):36. doi: 10.1186/s12950-024-00403-z.
3
Comparison of swabbing and cutting-out DNA collection methods from cotton, paper, and cardboard surfaces.
Forensic Sci Int Synerg. 2024 Jan 1;8:100453. doi: 10.1016/j.fsisyn.2023.100453. eCollection 2024.
6
DOT-1.1-dependent H3K79 methylation promotes normal meiotic progression and meiotic checkpoint function in C. elegans.
PLoS Genet. 2020 Oct 26;16(10):e1009171. doi: 10.1371/journal.pgen.1009171. eCollection 2020 Oct.
7
Impact of metal ions on PCR inhibition and RT-PCR efficiency.
Int J Legal Med. 2021 Jan;135(1):63-72. doi: 10.1007/s00414-020-02363-4. Epub 2020 Jul 3.
8
A Lamin-Associated Chromatin Model for Chromosome Organization.
Biophys J. 2020 Jun 16;118(12):3041-3050. doi: 10.1016/j.bpj.2020.05.014. Epub 2020 May 20.
9
DOT1L and H3K79 Methylation in Transcription and Genomic Stability.
Biomolecules. 2018 Feb 27;8(1):11. doi: 10.3390/biom8010011.
10
The L3MBTL3 Methyl-Lysine Reader Domain Functions As a Dimer.
ACS Chem Biol. 2016 Mar 18;11(3):722-8. doi: 10.1021/acschembio.5b00632. Epub 2015 Sep 2.

本文引用的文献

1
Self-assembly of single and closely spaced nucleosome core particles.
Nucleic Acids Res. 1980 Jan 11;8(1):21-42. doi: 10.1093/nar/8.1.21.
3
Chromatin structure: a repeating unit of histones and DNA.
Science. 1974 May 24;184(4139):868-71. doi: 10.1126/science.184.4139.868.
4
Chromatin sub-structure. The digestion of chromatin DNA at regularly spaced sites by a nuclear deoxyribonuclease.
Biochem Biophys Res Commun. 1973 May 15;52(2):504-10. doi: 10.1016/0006-291x(73)90740-7.
5
Spheroid chromatin units (v bodies).
Science. 1974 Jan 25;183(4122):330-2. doi: 10.1126/science.183.4122.330.
6
Yeast chromatin subunit structure.
Science. 1975 Apr 11;188(4184):165-6. doi: 10.1126/science.1090006.
7
Nuclease cleavage of chromatin at 100-nucleotide pair intervals.
Nature. 1976 Dec 9;264(5586):517-22. doi: 10.1038/264517a0.
8
Mapping DNAase l-susceptible sites in nucleosomes labeled at the 5' ends.
Cell. 1976 Oct;9(2):347-53. doi: 10.1016/0092-8674(76)90124-0.
9
Reconstitution of chromatin core particles.
Biochemistry. 1977 Nov 29;16(24):5295-303. doi: 10.1021/bi00643a021.
10
Action of micrococcal nuclease on chromatin and the location of histone H1.
J Mol Biol. 1977 Jan 25;109(3):393-404. doi: 10.1016/s0022-2836(77)80019-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验