Cook P F, Cleland W W
Biochemistry. 1981 Mar 31;20(7):1805-16. doi: 10.1021/bi00510a015.
Theory is developed for th pH dependence of isotope effects in a mechanism where a pH-dependent step precedes the isotope-sensitive bond-breaking step, and the rate of the latter varies only slightly with the state of protonation of the acid-base catalytic group on the enzyme. In such a mechanism, the isotope effects fall to 1.0 in the forward direction and to the equilibrium isotope effect in the reverse direction at pH values where the pH-sensitive step becomes totally rate limiting in the reverse direction. This model accurately describes the kinetics of yeast alcohol dehydrogenase, where V/Kacetone and the isotope effects on V2-propanol and V/K2-propanol decrease above a pK of 8.8 (both isotope effects becoming 1.0 at pH 10). The model also fits the kinetics of liver alcohol dehydrogenase, where Vcyclohexanol and V/Kcyclohexanol decrease below pKs of 6.2 and 7.1, and above pKs of 9.5 and 10.3. pKi trifluoroethanol decreases below a pK of 7.2, and above pK of 10.1, while pKi isobutyramide drops above a pK of 10.0. Vcyclohexanone decreases above a pK of 8.4 while V/Kcyclohexanone decreases above pKs of 8.8 and 9.7. Isotope effects on V/Kcyclohexanol and V/Kcyclohexanone decrease above identical pKs of 9.4 to values of 1 and 0.88, respectively, at pH 11. Comparison of a value of 2.5 for D(V/Kcyclohexanol) with an average value of 5.53 for T(V/Kcyclohexanol) allowed circulation of 6.3 as the intrinsic deuterium isotope effect. These data suggest that E-DPN-alcohol undergoes a proton transfer to the enzyme to give an EH-DPN-alkoxide complex which can lose its proton at high pH to give E-DPN-alkoxide and that both of these alkoxide complexes undergo hydride transfer to give DPNH and ketone. the alkoxide intermediate is not free to dissociate until it is protonated, either because it is coordinated to Zn or because the enzyme is in a closed catalytic configuration.
针对一种机制中同位素效应的pH依赖性建立了理论,在该机制中,一个pH依赖性步骤先于同位素敏感的断键步骤,且后者的速率仅随酶上酸碱催化基团的质子化状态略有变化。在这样一种机制中,在正向反应中同位素效应降至1.0,而在反向反应中,在pH值使得pH敏感步骤在反向反应中完全成为速率限制步骤时,同位素效应降至平衡同位素效应。该模型准确地描述了酵母乙醇脱氢酶的动力学,其中V/K丙酮以及对V/2-丙醇和V/K2-丙醇的同位素效应在pK为8.8以上时降低(两种同位素效应在pH 10时均变为1.0)。该模型也符合肝脏乙醇脱氢酶的动力学,其中V环己醇和V/K环己醇在pK分别为6.2和7.1以下以及9.5和10.3以上时降低。pKi三氟乙醇在pK为7.2以下以及10.1以上时降低,而pKi异丁酰胺在pK为10.0以上时下降。V环己酮在pK为8.4以上时降低,而V/K环己酮在pK为8.8和9.7以上时降低。对V/K环己醇和V/K环己酮的同位素效应在相同的pK为9.4以上时降低,在pH 11时分别降至1和0.88的值。将D(V/K环己醇)的值2.5与T(V/K环己醇)的平均值5.53进行比较,得出作为本征氘同位素效应的6.3的循环值。这些数据表明,E-DPN-醇向酶进行质子转移,生成EH-DPN-醇盐复合物,该复合物在高pH下可失去质子,生成E-DPN-醇盐,并且这两种醇盐复合物均进行氢化物转移,生成DPNH和酮。醇盐中间体在质子化之前不能自由解离,这要么是因为它与锌配位,要么是因为酶处于封闭的催化构型。