Takagi M, Tsuchiya T, Ishimoto M
J Bacteriol. 1981 Dec;148(3):762-8. doi: 10.1128/jb.148.3.762-768.1981.
Proton translocation coupled to trimethylamine N-oxide reduction was studied in Escherichia coli grown anaerobically in the presence of trimethylamine N-oxide. Rapid acidification of the medium was observed when trimethylamine N-oxide was added to anaerobic cell suspensions of E. coli K-10. Acidification was sensitive to the proton conductor 3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile (SF6847). No pH change was shown in a strain deficient in trimethylamine N-oxide reductase activity. The apparent H+/trimethylamine N-oxide ratio in cells oxidizing endogenous substrates was 3 to 4 g-ions of H+ translocated per mol of trimethylamine N-oxide added. The addition of trimethylamine N-oxide and formate to ethylenediaminetetraacetic acid-treated cell suspension caused fluorescence quenching of 3,3'-dipropylthiacarbocyanine [diS-C3-(5)], indicating the generation of membrane potential. These results indicate that the reduction of trimethylamine N-oxide in E. coli is catalyzed by an anaerobic electron transfer system, resulting in formation of a proton motive force. Trimethylamine N-oxide reductase activity and proton extrusion were also examined in chlorate-resistant mutants. Reduction of trimethylamine N-oxide occurred in chlC, chlG, and chlE mutants, whereas chlA, chlB, and chlD mutants, which are deficient in the molybdenum cofactor, could not reduce it. Protons were extruded in chlC and chlG mutants, but not in chlA, chlB, and chlD mutants. Trimethylamine N-oxide reductase activity in a chlD mutant was restored to the wild-type level by the addition of 100 microM molybdate to the growth medium, indicating that the same molybdenum cofactor as used by nitrate reductase is required for the trimethylamine N-oxide reductase system.
在三甲胺 N-氧化物存在下厌氧培养的大肠杆菌中,研究了与三甲胺 N-氧化物还原偶联的质子转运。当将三甲胺 N-氧化物添加到大肠杆菌 K-10 的厌氧细胞悬液中时,观察到培养基迅速酸化。酸化对质子导体 3,5-二叔丁基-4-羟基苄叉丙二腈(SF6847)敏感。在三甲胺 N-氧化物还原酶活性缺陷的菌株中未显示 pH 变化。氧化内源性底物的细胞中表观 H⁺/三甲胺 N-氧化物比率为每添加 1 摩尔三甲胺 N-氧化物转运 3 至 4 克离子的 H⁺。向乙二胺四乙酸处理的细胞悬液中添加三甲胺 N-氧化物和甲酸盐会导致 3,3'-二丙基硫代碳菁 [diS-C3-(5)] 的荧光猝灭,表明产生了膜电位。这些结果表明,大肠杆菌中三甲胺 N-氧化物的还原由厌氧电子传递系统催化,导致形成质子动力。还在耐氯酸盐突变体中检测了三甲胺 N-氧化物还原酶活性和质子外排。chlC、chlG 和 chlE 突变体中发生了三甲胺 N-氧化物的还原,而缺乏钼辅因子的 chlA、chlB 和 chlD 突变体则不能还原它。chlC 和 chlG 突变体中有质子外排,而 chlA、chlB 和 chlD 突变体中没有。通过向生长培养基中添加 100 μM 钼酸盐,chlD 突变体中的三甲胺 N-氧化物还原酶活性恢复到野生型水平,表明三甲胺 N-氧化物还原酶系统需要与硝酸盐还原酶相同的钼辅因子。