Suppr超能文献

酿酒酵母细胞增殖的大小控制模型。

Size control models of Saccharomyces cerevisiae cell proliferation.

作者信息

Wheals A E

出版信息

Mol Cell Biol. 1982 Apr;2(4):361-8. doi: 10.1128/mcb.2.4.361-368.1982.

Abstract

By using time-lapse photomicroscopy, the individual cycle times and sizes at bud emergence were measured for a population of saccharomyces cerevisiae cells growing exponentially under balanced growth conditions in a specially constructed filming slide. There was extensive variability in both parameters for daughter and parent cells. The data on 162 pairs of siblings were analyzed for agreement with the predictions of the transition probability hypothesis and the critical-size hypothesis of yeast cell proliferation and also with a model incorporating both of these hypotheses in tandem. None of the models accounted for all of the experimental data, but two models did give good agreement to all of the data. The wobbly tandem model proposes that cells need to attain a critical size, which is very variable, enabling them to enter a start state from which they exit with first order kinetics. The sloppy size control model suggests that cells have an increasing probability per unit time of traversing start as they increase in size, reaching a high plateau value which is less than one. Both models predict that the kinetics of entry into the cell division sequence will strongly depend on variability in birth size and thus will be quite different for daughters and parents of the asymmetrically dividing yeast cells. Mechanisms underlying these models are discussed.

摘要

通过延时显微镜技术,在特制的拍摄载玻片上,对处于平衡生长条件下指数生长的酿酒酵母细胞群体,测量了出芽时的个体周期时间和大小。子细胞和母细胞的这两个参数都存在很大的变异性。分析了162对同胞细胞的数据,以检验其是否符合酵母细胞增殖的转变概率假说和临界大小假说的预测,以及一个将这两个假说串联起来的模型的预测。没有一个模型能够解释所有的实验数据,但有两个模型与所有数据都有很好的一致性。摇摆串联模型提出,细胞需要达到一个临界大小,这个临界大小变化很大,使它们能够进入一个起始状态,然后以一级动力学从该状态退出。宽松大小控制模型表明,细胞随着大小增加,单位时间内穿越起始点的概率也增加,达到一个小于1的高原值。两个模型都预测,进入细胞分裂序列的动力学将强烈依赖于出生时大小的变异性,因此对于不对称分裂的酵母细胞的子细胞和母细胞来说会有很大不同。文中讨论了这些模型背后的机制。

相似文献

2
Variability in individual cell cycles of Saccharomyces cerevisiae.
J Cell Sci. 1981 Aug;50:361-76. doi: 10.1242/jcs.50.1.361.
3
Sloppy size control of the cell division cycle.细胞分裂周期中不精确的大小控制。
J Theor Biol. 1986 Feb 21;118(4):405-26. doi: 10.1016/s0022-5193(86)80162-x.
5
The relationship between yeast cell size and cell division in Candida albicans.
Can J Microbiol. 1984 Feb;30(2):192-203. doi: 10.1139/m84-030.
8
Asymmetrical division of Saccharomyces cerevisiae.酿酒酵母的不对称分裂。
J Bacteriol. 1980 Jun;142(3):808-18. doi: 10.1128/jb.142.3.808-818.1980.

引用本文的文献

2
Modelling how plant cell-cycle progression leads to cell size regulation.模拟植物细胞周期进程如何导致细胞大小调节。
PLoS Comput Biol. 2023 Oct 20;19(10):e1011503. doi: 10.1371/journal.pcbi.1011503. eCollection 2023 Oct.
10
Cell-Size Control.细胞大小控制
Cold Spring Harb Perspect Biol. 2016 Apr 1;8(4):a019083. doi: 10.1101/cshperspect.a019083.

本文引用的文献

2
Cell cycle control--both deterministic and probabilistic?
Nature. 1980 Jul 3;286(5768):9-10. doi: 10.1038/286009a0.
4
Variability in individual cell cycles of Saccharomyces cerevisiae.
J Cell Sci. 1981 Aug;50:361-76. doi: 10.1242/jcs.50.1.361.
5
Nature of the G1 phase of the yeast Saccharomyces cerevisiae.酿酒酵母G1期的性质。
Proc Natl Acad Sci U S A. 1981 May;78(5):3030-3. doi: 10.1073/pnas.78.5.3030.
7
Asymmetrical division of Saccharomyces cerevisiae.酿酒酵母的不对称分裂。
J Bacteriol. 1980 Jun;142(3):808-18. doi: 10.1128/jb.142.3.808-818.1980.
10
Genetic control of the cell division cycle in yeast.酵母细胞分裂周期的遗传控制。
Science. 1974 Jan 11;183(4120):46-51. doi: 10.1126/science.183.4120.46.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验