Suppr超能文献

Amino acid residues lining the chloride channel of the cystic fibrosis transmembrane conductance regulator.

作者信息

Akabas M H, Kaufmann C, Cook T A, Archdeacon P

机构信息

Center for Molecular Recognition, Columbia University, New York, New York 10032.

出版信息

J Biol Chem. 1994 May 27;269(21):14865-8.

PMID:7515047
Abstract

The cystic fibrosis transmembrane conductance regulator forms a chloride channel that is regulated by phosphorylation and intracellular ATP levels. The structure of the channel-forming domains is undetermined. To identify the residues lining this channel we substituted cysteine, one at a time, for 9 consecutive residues (91-99) in the M1 membrane-spanning segment. The cysteine substitution mutants were expressed in Xenopus oocytes. We determined the accessibility of the engineered cysteine to charged, sulfhydryl-specific methanethiosulfonate reagents added extracellularly. We assume that, among residues in membrane-spanning segments, only those lining the channel will be accessible to react with these hydrophilic reagents and that such a reaction would irreversibly alter conduction through the channel. Only the cysteines substituted for Gly-91, Lys-95, and Gln-98 were accessible to the reagents. We conclude that these residues are in the channel lining. The periodicity of these residues is consistent with an alpha-helical secondary structure.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验