Suppr超能文献

囊性纤维化跨膜传导调节因子M3跨膜区段中的通道内衬残基。

Channel-lining residues in the M3 membrane-spanning segment of the cystic fibrosis transmembrane conductance regulator.

作者信息

Akabas M H

机构信息

Center for Molecular Recognition, Department of Physiology, College of Physicians and Surgeons, Columbia University, New York 10032, USA.

出版信息

Biochemistry. 1998 Sep 1;37(35):12233-40. doi: 10.1021/bi980969o.

Abstract

The cystic fibrosis transmembrane conductance regulator (CFTR) forms a chloride-selective channel. Residues from the 12 putative membrane-spanning segments form at least part of the channel lining. We need to identify the channel-lining residues in order to understand the structural basis for the channel's functional properties. Using the substituted-cysteine-accessibility method we mutated to cysteine, one at a time, 24 consecutive residues (Asp192-Ile215) in the M3 membrane-spanning segment. Cysteines substituted for His199, Phe200, Trp202, Ile203, Pro205, Gln207, Leu211, and Leu214 reacted with charged, sulfhydryl-specific reagents that are derivatives of methanethiosulfonate (MTS). We infer that these residues are on the water-accessible surface of the protein and probably form a portion of the channel lining. When plotted on an alpha-helical wheel the exposed residues from Gln207 to Leu214 lie within an arc of 60 degrees; the exposed residues in the cytoplasmic half (His199-Ile203) lie within an arc of 160 degrees. We infer that the secondary structures of the extracellular and cytoplasmic halves of M3 are alpha-helical and that Pro205, in the middle of the M3 segment, may bend the M3 segment, moving the cytoplasmic end of the segment in toward the central axis of the channel. The bend in the M3 segment may help to narrow the channel lumen near the cytoplasmic end. In addition, unlike full-length CFTR, the current induced by the deletion construct, Delta259, is inhibited by the MTS reagents, implying that the channel structure of Delta259 is different than the channel structure of wild-type CFTR.

摘要

囊性纤维化跨膜传导调节因子(CFTR)形成一个氯离子选择性通道。12个假定的跨膜片段中的残基至少构成了通道内衬的一部分。为了理解通道功能特性的结构基础,我们需要确定通道内衬残基。我们使用半胱氨酸替代可及性方法,将M3跨膜片段中的24个连续残基(Asp192 - Ile215)逐个突变为半胱氨酸。被半胱氨酸替代的His199、Phe200、Trp202、Ile203、Pro205、Gln207、Leu211和Leu214与带电荷的、对巯基具有特异性的试剂(甲硫基磺酸酯(MTS)的衍生物)发生反应。我们推断这些残基位于蛋白质的水可及表面,并且可能构成通道内衬的一部分。当绘制在α-螺旋轮上时,从Gln207到Leu214的暴露残基位于60度的弧内;胞质半段(His199 - Ile203)中的暴露残基位于160度的弧内。我们推断M3的细胞外和胞质半段的二级结构是α-螺旋,并且位于M3片段中间的Pro205可能使M3片段弯曲,将该片段的胞质端向通道的中心轴移动。M3片段中的弯曲可能有助于在胞质端附近使通道腔变窄。此外,与全长CFTR不同,缺失构建体Delta259诱导的电流被MTS试剂抑制,这意味着Delta259的通道结构与野生型CFTR的通道结构不同。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验