Bedrov Y A, Akoev G N, Dick O E
Department of Applied Mathematics, Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg.
Biol Cybern. 1995 Jul;73(2):149-54. doi: 10.1007/BF00204053.
We consider the problem of the existence of a negative slope region (NSR) in the voltage-current curve of the neuronal membrane and the relationship between this phenomenon and the membrane parameters. For the Hodgkin-Huxley model it is proposed to determine the dependence of the number of NSR on the values of the maximal sodium (gNa) and potassium (gk) conductances. The method is suggested for constructing the boundaries on the (gNa, gk) plane, in passing through which the number of NSR changes to 1. Using the method we partition the (gNa, gk) plane into the regions corresponding to the curves with the different number of NSR. This number can be changed from 0 to 2 in changing the values of gNa and gk over the physiologically possible range.
我们考虑神经元膜电压-电流曲线中负斜率区域(NSR)的存在问题,以及该现象与膜参数之间的关系。对于霍奇金-赫胥黎模型,建议确定NSR数量对最大钠电导(gNa)和钾电导(gk)值的依赖性。提出了一种在(gNa,gk)平面上构建边界的方法,当穿过这些边界时,NSR的数量变为1。利用该方法,我们将(gNa,gk)平面划分为对应于不同NSR数量曲线的区域。在生理上可能的范围内改变gNa和gk的值时,这个数量可以从0变化到2。