Ferrando A, Kron S J, Rios G, Fink G R, Serrano R
Instituto de Biologia Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Spain.
Mol Cell Biol. 1995 Oct;15(10):5470-81. doi: 10.1128/MCB.15.10.5470.
Dynamic regulation of ion transport is essential for homeostasis as cells confront changes in their environment. The gene HAL3 encodes a novel component of this regulatory circuit in the yeast Saccharomyces cerevisiae. Overexpression of HAL3 improves growth of wild-type cells exposed to toxic concentrations of sodium and lithium and suppresses the salt sensitivity conferred by mutation of the calcium-dependent protein phosphatase calcineurin. Null mutants of HAL3 display salt sensitivity. The sequence of HAL3 gives little clue to its function. However, alterations in intracellular cation concentrations associated with changes in HAL3 expression suggest that HAL3 activity may directly increase cytoplasmic K+ and decrease Na+ and Li+. Cation efflux in S. cerevisiae is mediated by the P-type ATPase encoded by the ENA1/PMR24 gene, a putative plasma membrane Na+ pump whose expression is salt induced. Acting in concert with calcineurin, HAL3 is necessary for full activation of ENA1 expression. This functional complementarity is also reflected in the participation of both proteins in recovery from alpha-factor-induced growth arrest. Recently, HAL3 was isolated as a gene (named SIS2) which when overexpressed partially relieves loss of transcription of G1 cyclins in mutants lacking the protein phosphatase Sit4p. Therefore, HAL3 influences cell cycle control and ion homeostasis, acting in parallel to the protein phosphatases Sit4p and calcineurin.
当细胞面临环境变化时,离子转运的动态调节对于体内平衡至关重要。基因HAL3编码酿酒酵母中这种调节回路的一个新组分。HAL3的过表达改善了暴露于有毒浓度钠和锂的野生型细胞的生长,并抑制了钙依赖性蛋白磷酸酶钙调神经磷酸酶突变所赋予的盐敏感性。HAL3的缺失突变体表现出盐敏感性。HAL�的序列几乎没有提供其功能线索。然而,与HAL3表达变化相关的细胞内阳离子浓度改变表明,HAL3活性可能直接增加细胞质中的K⁺并降低Na⁺和Li⁺。酿酒酵母中的阳离子外流由ENA1/PMR24基因编码的P型ATP酶介导,ENA1/PMR24基因是一种假定的质膜Na⁺泵,其表达受盐诱导。与钙调神经磷酸酶协同作用,HAL3是ENA1表达完全激活所必需的。这种功能互补性也体现在两种蛋白质参与从α因子诱导的生长停滞中恢复。最近,HAL3被分离为一个基因(命名为SIS2),当它过表达时,可部分缓解缺乏蛋白磷酸酶Sit4p的突变体中G1细胞周期蛋白转录的丧失。因此,HAL3影响细胞周期控制和离子稳态,与蛋白磷酸酶Sit4p和钙调神经磷酸酶平行发挥作用。