Vaina L M, Sundareswaran V, Harris J G
Intelligent Systems Laboratory, College of Engineering, Boston University, MA 02215, USA.
Brain Res Cogn Brain Res. 1995 Jul;2(3):155-63. doi: 10.1016/0926-6410(95)90004-7.
The effects of practice on the discrimination of direction of motion in briefly presented noisy dynamic random dot patterns are investigated in several forced-choice psychophysical tasks. We found that the percentage of correct responses on any specific task increases linearly with repetition of trials within roughly 200 trials from about chance to a performance of 90% or better. The level of performance remained constant or improved over several days, and in most instances it did not transfer when stimulus parameters changed. We used a modified Radial Basis Function (RBF) representation to model the psychophysical tasks. The performance of the model is functionally similar to the psychophysical results. We propose a Hebbian learning algorithm which deactivates the inputs from neurons responding to motion noise in the stimulus. Our computational model suggests that to solve this task in biological systems, neurons (perhaps in MT) improve their performance by 'learning to ignore' noise in the image.
在几个强制选择心理物理学任务中,研究了练习对在短暂呈现的有噪声动态随机点模式中运动方向辨别能力的影响。我们发现,在大约200次试验内,任何特定任务上的正确反应百分比随试验重复次数呈线性增加,从大约随机水平提高到90%或更高的表现。在几天内,表现水平保持不变或有所提高,并且在大多数情况下,当刺激参数改变时,表现不会转移。我们使用一种改进的径向基函数(RBF)表示来对心理物理学任务进行建模。该模型的表现与心理物理学结果在功能上相似。我们提出一种赫布学习算法,该算法会使对刺激中运动噪声做出反应的神经元的输入失活。我们的计算模型表明,为了在生物系统中解决此任务,神经元(可能在MT中)通过“学会忽略”图像中的噪声来提高其表现。