Suppr超能文献

运动机能的内部表征:视觉运动学习中泛化的启示

Internal representations of the motor apparatus: implications from generalization in visuomotor learning.

作者信息

Imamizu H, Uno Y, Kawato M

机构信息

ATR Human Information Processing Research Laboratories, Kyoto, Japan.

出版信息

J Exp Psychol Hum Percept Perform. 1995 Oct;21(5):1174-98. doi: 10.1037//0096-1523.21.5.1174.

Abstract

Recent computational studies have proposed that the motor system acquires internal models of kinematic transformations, dynamic transformations, or both by learning. Computationally, internal models can be characterized by 2 extreme representations: structured and tabular (C. G. Atkeson, 1989). Tabular models do not need prior knowledge about the structure of the motor apparatus, but they lack the capability to generalize learned movements. Structured models, on the other hand, can generalize learned movements, but they require an analytical description of the motor apparatus. In investigating humans' capacity to generalize kinematic transformations, we examined which type of representation humans' motor system might use. Results suggest that internal representations are nonstructured and nontabular. Findings may be due to a neural network model with a medium number of neurons and synapses.

摘要

最近的计算研究表明,运动系统通过学习获取运动学变换、动力学变换或两者的内部模型。从计算角度来看,内部模型可以用两种极端表示来表征:结构化和表格化(C.G.阿特金森,1989)。表格化模型不需要关于运动装置结构的先验知识,但它们缺乏概括所学运动的能力。另一方面,结构化模型可以概括所学运动,但它们需要对运动装置进行分析描述。在研究人类概括运动学变换的能力时,我们考察了人类运动系统可能使用的表征类型。结果表明,内部表征是非结构化和非表格化的。这些发现可能归因于一个具有中等数量神经元和突触的神经网络模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验