Suppr超能文献

利用地理信息系统确定莱姆病的环境风险因素。

Environmental risk factors for Lyme disease identified with geographic information systems.

作者信息

Glass G E, Schwartz B S, Morgan J M, Johnson D T, Noy P M, Israel E

机构信息

Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Hygiene and Public Health, Baltimore, MD 21205, USA.

出版信息

Am J Public Health. 1995 Jul;85(7):944-8. doi: 10.2105/ajph.85.7.944.

Abstract

OBJECTIVES

A geographic information system was used to identify and locate residential environmental risk factors for Lyme disease.

METHODS

Data were obtained for 53 environmental variables at the residences of Lyme disease case patients in Baltimore County from 1989 through 1990 and compared with data for randomly selected addresses. A risk model was generated combining the geographic information system with logistic regression analysis. The model was validated by comparing the distribution of cases in 1991 with another group of randomly selected addresses.

RESULTS

In crude analyses, 11 environmental variables were associated with Lyme disease. In adjusted analyses, residence in forested areas (odds ratio [OR] = 3.7, 95% confidence interval [CI] = 1.2, 11.8), on specific soils (OR = 2.1, 95% CI = 1.0, 4.4), and in two regions of the county (OR = 3.5, 95% CI = 1.6, 7.4) (OR = 2.8, 95% CI = 1.0, 7.7) was associated with elevated risk of getting Lyme disease. Residence in highly developed regions was protective (OR = 0.3, 95% CI = 0.1, 1.0). The risk of Lyme disease in 1991 increased with risk categories defined from the 1989 through 1990 data.

CONCLUSIONS

Combining a geographic information system with epidemiologic methods can be used to rapidly identify risk factors of zoonotic disease over large areas.

摘要

目的

利用地理信息系统识别并定位莱姆病的居住环境风险因素。

方法

获取了1989年至1990年巴尔的摩县莱姆病病例患者住所的53个环境变量数据,并与随机选择地址的数据进行比较。通过将地理信息系统与逻辑回归分析相结合生成了一个风险模型。通过比较1991年病例在另一组随机选择地址中的分布情况对该模型进行了验证。

结果

在粗略分析中,11个环境变量与莱姆病相关。在调整分析中,居住在林区(比值比[OR]=3.7,95%置信区间[CI]=1.2,11.8)、特定土壤上(OR=2.1,95%CI=1.0,4.4)以及该县的两个区域(OR=3.5,95%CI=1.6,7.4)(OR=2.8,95%CI=1.0,7.7)与感染莱姆病的风险升高相关。居住在高度发达地区具有保护作用(OR=0.3,95%CI=0.1,1.0)。根据1989年至1990年的数据定义的风险类别,1991年莱姆病的风险增加。

结论

将地理信息系统与流行病学方法相结合可用于在大面积区域快速识别动物源性疾病的风险因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a403/1615529/b42e33247b12/amjph00445-0052-a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验