Suppr超能文献

可编程蛋白质电路设计。

Programmable protein circuit design.

机构信息

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA.

出版信息

Cell. 2021 Apr 29;184(9):2284-2301. doi: 10.1016/j.cell.2021.03.007. Epub 2021 Apr 12.

Abstract

A fundamental challenge in synthetic biology is to create molecular circuits that can program complex cellular functions. Because proteins can bind, cleave, and chemically modify one another and interface directly and rapidly with endogenous pathways, they could extend the capabilities of synthetic circuits beyond what is possible with gene regulation alone. However, the very diversity that makes proteins so powerful also complicates efforts to harness them as well-controlled synthetic circuit components. Recent work has begun to address this challenge, focusing on principles such as orthogonality and composability that permit construction of diverse circuit-level functions from a limited set of engineered protein components. These approaches are now enabling the engineering of circuits that can sense, transmit, and process information; dynamically control cellular behaviors; and enable new therapeutic strategies, establishing a powerful paradigm for programming biology.

摘要

合成生物学面临的一个基本挑战是创建能够编程复杂细胞功能的分子电路。由于蛋白质可以相互结合、切割和化学修饰,并直接快速地与内源性途径相互作用,因此它们可以扩展合成电路的功能,超出仅通过基因调控实现的功能。然而,正是蛋白质的多样性使得它们如此强大,也使得将它们用作经过良好控制的合成电路组件变得复杂。最近的工作已经开始解决这一挑战,重点关注正交性和可组合性等原则,这些原则允许从有限数量的工程蛋白组件构建多样化的电路级功能。这些方法现在正在实现能够感知、传输和处理信息的电路的工程设计;动态控制细胞行为;并启用新的治疗策略,为编程生物学建立了一个强大的范例。

相似文献

1
Programmable protein circuit design.可编程蛋白质电路设计。
Cell. 2021 Apr 29;184(9):2284-2301. doi: 10.1016/j.cell.2021.03.007. Epub 2021 Apr 12.
2
Tools and Principles for Microbial Gene Circuit Engineering.微生物基因电路工程的工具和原理。
J Mol Biol. 2016 Feb 27;428(5 Pt B):862-88. doi: 10.1016/j.jmb.2015.10.004. Epub 2015 Oct 20.
3
Designing Biological Circuits: Synthetic Biology Within the Operon Model and Beyond.设计生物电路:操纵子模型内及之外的合成生物学
Annu Rev Biochem. 2021 Jun 20;90:221-244. doi: 10.1146/annurev-biochem-013118-111914. Epub 2021 Mar 30.
4
Synthetic biology: integrated gene circuits.合成生物学:综合基因电路。
Science. 2011 Sep 2;333(6047):1244-8. doi: 10.1126/science.1207084.
5
Synthetic circuits, devices and modules.合成电路、器件和模块。
Protein Cell. 2010 Nov;1(11):974-8. doi: 10.1007/s13238-010-0133-8. Epub 2010 Dec 10.
7
Addressing biological uncertainties in engineering gene circuits.解决工程基因回路中的生物学不确定性问题。
Integr Biol (Camb). 2016 Apr 18;8(4):456-64. doi: 10.1039/c5ib00275c. Epub 2015 Dec 17.
8
Engineering multicellular traits in synthetic microbial populations.在合成微生物群体中工程化多细胞特性。
Curr Opin Chem Biol. 2012 Aug;16(3-4):370-8. doi: 10.1016/j.cbpa.2012.04.002. Epub 2012 May 15.
9
Principles of genetic circuit design.遗传电路设计原理。
Nat Methods. 2014 May;11(5):508-20. doi: 10.1038/nmeth.2926.

引用本文的文献

3
'Intelligent' proteins.“智能”蛋白质。
Cell Mol Life Sci. 2025 Jun 14;82(1):239. doi: 10.1007/s00018-025-05770-1.
4
PERRC: Protease Engineering with Reactant Residence Time Control.PERRC:通过反应物停留时间控制进行蛋白酶工程
ACS Synth Biol. 2025 Jun 20;14(6):2241-2253. doi: 10.1021/acssynbio.5c00154. Epub 2025 May 19.
6
Protease engineering: Approaches, tools, and emerging trends.蛋白酶工程:方法、工具及新趋势
Biotechnol Adv. 2025 Sep;82:108602. doi: 10.1016/j.biotechadv.2025.108602. Epub 2025 May 12.
7
Post-transcriptional modular synthetic receptors.转录后模块化合成受体
Nat Chem Biol. 2025 Mar 28. doi: 10.1038/s41589-025-01872-w.

本文引用的文献

1
Ligand-receptor promiscuity enables cellular addressing.配体-受体混杂性实现细胞靶向。
Cell Syst. 2022 May 18;13(5):408-425.e12. doi: 10.1016/j.cels.2022.03.001. Epub 2022 Apr 13.
3
Synthetic multistability in mammalian cells.哺乳动物细胞中的合成多稳性。
Science. 2022 Jan 21;375(6578):eabg9765. doi: 10.1126/science.abg9765.
4
De novo protein design by deep network hallucination.基于深度网络幻觉的从头设计蛋白质。
Nature. 2021 Dec;600(7889):547-552. doi: 10.1038/s41586-021-04184-w. Epub 2021 Dec 1.
5
Rapid generation of potent antibodies by autonomous hypermutation in yeast.酵母自主超突变快速产生有效抗体。
Nat Chem Biol. 2021 Oct;17(10):1057-1064. doi: 10.1038/s41589-021-00832-4. Epub 2021 Jun 24.
7
Computation-guided optimization of split protein systems.基于计算的分裂蛋白系统优化。
Nat Chem Biol. 2021 May;17(5):531-539. doi: 10.1038/s41589-020-00729-8. Epub 2021 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验