Suppr超能文献

膜/微管末端附着复合体(TACs)使正端的组装动力学能够在非洲爪蟾卵间期提取物中将膜推和拉入微管泡网络。

Membrane/microtubule tip attachment complexes (TACs) allow the assembly dynamics of plus ends to push and pull membranes into tubulovesicular networks in interphase Xenopus egg extracts.

作者信息

Waterman-Storer C M, Gregory J, Parsons S F, Salmon E D

机构信息

Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA.

出版信息

J Cell Biol. 1995 Sep;130(5):1161-9. doi: 10.1083/jcb.130.5.1161.

Abstract

We discovered by using high resolution video microscopy, that membranes become attached selectively to the growing plus ends of microtubules by membrane/microtubule tip attachment complexes (TACs) in interphase-arrested, undiluted, Xenopus egg extracts. Persistent plus end growth of stationary microtubules pushed the membranes into thin tubules and dragged them through the cytoplasm at the approximately 20 microns/min velocity typical of free plus ends. Membrane tubules also remained attached to plus ends when they switched to the shortening phase of dynamic instability at velocities typical of free ends, 50-60 microns/min. Over time, the membrane tubules contacted and fused with one another along their lengths, forming a polygonal network much like the distribution of ER in cells. Several components of the membrane networks formed by TACs were identified as ER by immunofluorescent staining using antibodies to ER-resident proteins. TAC motility was not inhibited by known inhibitors of microtubule motor activity, including 5 mM AMP-PNP, 250 microM orthovanadate, and ATP depletion. These results show that membrane/microtubule TACs enable polymerizing ends to push and depolymerizing ends to pull membranes into thin tubular extensions and networks at fast velocities.

摘要

我们通过高分辨率视频显微镜观察发现,在间期停滞、未稀释的非洲爪蟾卵提取物中,膜通过膜/微管末端附着复合物(TACs)选择性地附着于微管不断生长的正端。静止微管的持续正端生长将膜推成细管,并以游离正端典型的约20微米/分钟的速度将它们拖过细胞质。当膜细管转变为动态不稳定性的缩短阶段时,其速度为游离末端典型的50 - 60微米/分钟,此时膜细管也仍附着于正端。随着时间的推移,膜细管沿其长度相互接触并融合,形成一个多边形网络,非常类似于细胞内质网的分布。使用针对内质网驻留蛋白的抗体进行免疫荧光染色,由TACs形成的膜网络的几个成分被鉴定为内质网。TAC的运动不受已知的微管运动活性抑制剂的抑制,包括5 mM AMP - PNP、250 microM原钒酸盐和ATP耗竭。这些结果表明,膜/微管TACs使聚合端能够推动、解聚端能够拉动膜,从而快速形成细管状延伸和网络。

相似文献

3
Microtubule assembly in clarified Xenopus egg extracts.非洲爪蟾卵提取物中的微管装配
Cell Motil Cytoskeleton. 1997;36(1):1-11. doi: 10.1002/(SICI)1097-0169(1997)36:1<1::AID-CM1>3.0.CO;2-E.

引用本文的文献

2
EB3-informed dynamics of the microtubule stabilizing cap during stalled growth.停滞生长期间微管稳定帽的EB3相关动力学
Biophys J. 2025 Jan 21;124(2):227-244. doi: 10.1016/j.bpj.2024.11.3314. Epub 2024 Nov 27.
3
Principles of organelle positioning in motile and non-motile cells.细胞器在运动和非运动细胞中的定位原则。
EMBO Rep. 2024 May;25(5):2172-2187. doi: 10.1038/s44319-024-00135-4. Epub 2024 Apr 16.
4
A general model for the motion of multivalent cargo interacting with substrates.多价货物与基质相互作用的通用模型。
J R Soc Interface. 2023 Nov;20(208):20230510. doi: 10.1098/rsif.2023.0510. Epub 2023 Nov 29.
5
Measuring and modeling forces generated by microtubules.测量和模拟微管产生的力。
Biophys Rev. 2023 Oct 13;15(5):1095-1110. doi: 10.1007/s12551-023-01161-7. eCollection 2023 Oct.

本文引用的文献

3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验