Suppr超能文献

受时间依赖性突变影响的群体建模与优化

Modeling and optimization of populations subject to time-dependent mutation.

作者信息

Kepler T B, Perelson A S

机构信息

Department of Statistics, North Carolina State University, Raleigh 27695-8203, USA.

出版信息

Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8219-23. doi: 10.1073/pnas.92.18.8219.

Abstract

It has become clear that many organisms possess the ability to regulate their mutation rate in response to environmental conditions. So the question of finding an optimal mutation rate must be replaced by that of finding an optimal mutation schedule. We show that this task cannot be accomplished with standard population-dynamic models. We then develop a "hybrid" model for populations experiencing time-dependent mutation that treats population growth as deterministic but the time of first appearance of new variants as stochastic. We show that the hybrid model agrees well with a Monte Carlo simulation. From this model, we derive a deterministic approximation, a "threshold" model, that is similar to standard population dynamic models but differs in the initial rate of generation of new mutants. We use these techniques to model antibody affinity maturation by somatic hypermutation. We had previously shown that the optimal mutation schedule for the deterministic threshold model is phasic, with periods of mutation between intervals of mutation-free growth. To establish the validity of this schedule, we now show that the phasic schedule that optimizes the deterministic threshold model significantly improves upon the best constant-rate schedule for the hybrid and Monte Carlo models.

摘要

很明显,许多生物体具备根据环境条件调节其突变率的能力。因此,寻找最优突变率的问题必须被寻找最优突变时间表的问题所取代。我们表明,使用标准的种群动态模型无法完成这项任务。然后,我们为经历时间依赖性突变的种群开发了一个“混合”模型,该模型将种群增长视为确定性的,但新变体首次出现的时间视为随机的。我们表明,混合模型与蒙特卡罗模拟结果吻合得很好。从这个模型中,我们推导出一个确定性近似,即一个“阈值”模型,它类似于标准的种群动态模型,但在新突变体产生的初始速率上有所不同。我们使用这些技术来模拟通过体细胞超突变实现的抗体亲和力成熟。我们之前已经表明,确定性阈值模型的最优突变时间表是阶段性的,在无突变生长的间隔期之间存在突变期。为了确定这个时间表的有效性,我们现在表明,优化确定性阈值模型的阶段性时间表比混合模型和蒙特卡罗模型的最佳恒定速率时间表有显著改进。

相似文献

4
Waiting times to appearance and dominance of advantageous mutants: estimation based on the likelihood.
Math Biosci. 2001 Mar;170(1):59-77. doi: 10.1016/s0025-5564(00)00064-x.
6
Survival-extinction phase transition in a bit-string population with mutation.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Mar;67(3 Pt 1):031915. doi: 10.1103/PhysRevE.67.031915. Epub 2003 Mar 24.

引用本文的文献

7
Inferring HIV Escape Rates from Multi-Locus Genotype Data.从多位点基因型数据推断 HIV 逃逸率。
Front Immunol. 2013 Sep 3;4:252. doi: 10.3389/fimmu.2013.00252. eCollection 2013.
9
Noise effects in nonlinear biochemical signaling.非线性生化信号传导中的噪声效应
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jan;85(1 Pt 1):011901. doi: 10.1103/PhysRevE.85.011901. Epub 2012 Jan 3.
10
Optimality of mutation and selection in germinal centers.生发中心突变和选择的最优化。
PLoS Comput Biol. 2010 Jun 3;6(6):e1000800. doi: 10.1371/journal.pcbi.1000800.

本文引用的文献

4
Recombination in adaptive mutation.适应性突变中的重组
Science. 1994 Apr 8;264(5156):258-60. doi: 10.1126/science.8146657.
7
Family tree analysis of a transformed cell line and the transition probability model for the cell cycle.
Exp Cell Res. 1981 Feb;131(2):395-406. doi: 10.1016/0014-4827(81)90243-3.
8
Do cells cycle?细胞会进行周期循环吗?
Proc Natl Acad Sci U S A. 1973 Apr;70(4):1263-7. doi: 10.1073/pnas.70.4.1263.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验