Suppr超能文献

治疗时机改变了短期和长期抗生素治疗对感染的益处。

Treatment timing shifts the benefits of short and long antibiotic treatment over infection.

作者信息

Gjini Erida, Paupério Francisco F S, Ganusov Vitaly V

机构信息

Mathematical Modeling of Biological Processes Laboratory, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, Oeiras, 2780-156, Portugal.

Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisbon, 1749-016, Portugal.

出版信息

Evol Med Public Health. 2020 Nov 23;2020(1):249-263. doi: 10.1093/emph/eoaa033. eCollection 2020.

Abstract

Antibiotics are the major tool for treating bacterial infections. Rising antibiotic resistance, however, calls for a better use of antibiotics. While classical recommendations favor long and aggressive treatments, more recent clinical trials advocate for moderate regimens. In this debate, two axes of 'aggression' have typically been conflated: treatment intensity (dose) and treatment duration. The third dimension of treatment timing along each individual's infection course has rarely been addressed. By using a generic mathematical model of bacterial infection controlled by immune response, we examine how the relative effectiveness of antibiotic treatment varies with its timing, duration and antibiotic kill rate. We show that short or long treatments may both be beneficial depending on treatment onset, the target criterion for success and on antibiotic efficacy. This results from the dynamic trade-off between immune response build-up and resistance risk in acute, self-limiting infections, and uncertainty relating symptoms to infection variables. We show that in our model early optimal treatments tend to be 'short and strong', while late optimal treatments tend to be 'mild and long'. This suggests a shift in the aggression axis depending on the timing of treatment. We find that any specific optimal treatment schedule may perform more poorly if evaluated by other criteria, or under different host-specific conditions. Our results suggest that major advances in antibiotic stewardship must come from a deeper empirical understanding of bacterial infection processes in individual hosts. To guide rational therapy, mathematical models need to be constrained by data, including a better quantification of personal disease trajectory in humans. : Bacterial infections are becoming more difficult to treat worldwide because bacteria are becoming resistant to the antibiotics used. Addressing this problem requires a better understanding of how treatment along with other host factors impact antibiotic resistance. Until recently, most theoretical research has focused on the importance of antibiotic dosing on antibiotic resistance, however, duration and timing of treatment remain less explored. Here, we use a mathematical model of a generic bacterial infection to study three aspects of treatment: treatment dose/efficacy (defined by the antibiotic kill rate), duration, and timing, and their impact on several infection endpoints. We show that short and long treatment success strongly depends on when treatment begins (defined by the symptom threshold), the target criterion to optimize, and on antibiotic efficacy. We find that if administered early in an infection, "strong and short" therapy performs better, while if treatment begins at higher bacterial densities, a "mild and long" course of antibiotics is favored. In the model host immune defenses are key in preventing relapses, controlling antibiotic resistant bacteria and increasing the effectiveness of moderate intervention. In order to improve rational treatments of human infections, we call for a better quantification of individual disease trajectories in bacteria-immunity space.

摘要

抗生素是治疗细菌感染的主要手段。然而,抗生素耐药性不断上升,这就需要更好地使用抗生素。传统建议倾向于长期且积极的治疗,而最近的临床试验则提倡采用适度的治疗方案。在这场争论中,“积极程度”的两个方面通常被混为一谈:治疗强度(剂量)和治疗持续时间。沿着个体感染过程的治疗时机这第三个维度很少被提及。通过使用一个由免疫反应控制的细菌感染通用数学模型,我们研究了抗生素治疗的相对有效性如何随其时机、持续时间和抗生素杀灭率而变化。我们表明,短期或长期治疗可能都有益,这取决于治疗开始时间、成功的目标标准以及抗生素疗效。这是由于在急性自限性感染中免疫反应增强与耐药风险之间的动态权衡,以及症状与感染变量之间的不确定性所致。我们表明,在我们的模型中,早期的最佳治疗往往是“短而强效”,而晚期的最佳治疗往往是“温和而持久”。这表明根据治疗时机,积极程度的侧重点会发生转变。我们发现,如果根据其他标准进行评估,或者在不同的宿主特异性条件下,任何特定的最佳治疗方案可能表现得更差。我们的结果表明,抗生素管理的重大进展必须来自对个体宿主中细菌感染过程更深入的实证理解。为了指导合理治疗,数学模型需要由数据来约束,包括对人类个体疾病轨迹的更好量化。:在全球范围内,细菌感染正变得越来越难以治疗,因为细菌正在对所使用的抗生素产生耐药性。解决这个问题需要更好地理解治疗以及其他宿主因素如何影响抗生素耐药性。直到最近,大多数理论研究都集中在抗生素剂量对抗生素耐药性的重要性上,然而,治疗持续时间和时机仍较少被探讨。在这里,我们使用一个通用细菌感染的数学模型来研究治疗的三个方面:治疗剂量/疗效(由抗生素杀灭率定义)、持续时间和时机,以及它们对几个感染终点的影响。我们表明,短期和长期治疗的成功很大程度上取决于治疗何时开始(由症状阈值定义)、优化的目标标准以及抗生素疗效。我们发现,如果在感染早期给药,“强效且短期”的治疗效果更好,而如果在细菌密度较高时开始治疗,则倾向于采用“温和且长期”的抗生素疗程。在模型中,宿主免疫防御对于预防复发、控制耐药细菌以及提高适度干预的有效性至关重要。为了改善人类感染的合理治疗,我们呼吁在细菌 - 免疫空间中更好地量化个体疾病轨迹。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9651/7750949/e401b8ad2e71/eoaa033f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验