Mersch-Sundermann V, Wintermann F, Kern S, Hof H
Department of Medical Microbiology and Hygiene, Faculty of Clinical Medicine Mannheim, Ruprecht-Karls-University of Heidelberg, Germany.
Mutat Res. 1993 Feb;291(1):53-60. doi: 10.1016/0165-1161(93)90017-t.
To investigate the variability in test results obtained with the SOS chromotest (Escherichia coli PQ37 genotoxicity assay) when varying the composition of the exogenous metabolizing system (S9 mix), we examined the influence of different S9 and NADP concentrations, of buffer pH value, of SDS concentrations, the effects of E. coli PQ37 density and centrifugation steps on the expression of beta-galactosidase (beta g) and alkaline phosphatase (ap) activity, the calculated induction factors (IFs) and SOS-inducing potencies (SOSIPs). Additionally we examined the metabolic potency (stability) of S9 mix when stored at 37 degrees C before use. Initially, we used 0-5000 ng (= 0-20 nmole) benzo[a]pyrene (B[a]P) as a reference compound for the test procedure in the presence of standard S9 mix. Subsequently, to evaluate the results of S9 mix variations we examined several polycyclic aromatic hydrocarbons (PAHs) using both the standard and a modified S9 mix composition and test protocol. We observed the highest beta g and ap activities and/or IFs using only 11-27 microliters 9000 x g liver supernatant (S9) from Aroclor 1254-induced rats per assay (20-50% of standard amount) and calibrating the S9 mix Tris buffer to pH 7.8-8.0. 60-300 micrograms NADP/assay (10-50% of standard) was sufficient for optimum activation of PAHs. In contrast to previous investigations about the variability of the SOS chromotest in the absence of a metabolizing system, higher induction factors were obtained when using higher bacterial densities (12-18 x 10(6) cfu/assay). Centrifugation steps as recommended by other investigators were not necessary when using optimum S9 amounts. The metabolic activity of S9 mix remained nearly constant approximately 20 min after preparation, but decreased to 80% of its activity in about 1 h.
为了研究在改变外源代谢系统(S9混合物)组成时,使用SOS显色试验(大肠杆菌PQ37遗传毒性试验)所获得的测试结果的变异性,我们考察了不同S9和NADP浓度、缓冲液pH值、SDS浓度的影响,大肠杆菌PQ37密度和离心步骤对β-半乳糖苷酶(βg)和碱性磷酸酶(ap)活性表达、计算得出的诱导因子(IFs)和SOS诱导能力(SOSIPs)的影响。此外,我们还考察了S9混合物在使用前于37℃储存时的代谢能力(稳定性)。最初,我们使用0 - 5000 ng(= 0 - 20 nmol)苯并[a]芘(B[a]P)作为在标准S9混合物存在下测试程序的参考化合物。随后,为了评估S9混合物变化的结果,我们使用标准和改良的S9混合物组成及测试方案考察了几种多环芳烃(PAHs)。我们观察到,每次测定仅使用11 - 27微升来自经Aroclor 1254诱导的大鼠的9000×g肝脏上清液(S9)(标准量的20 - 50%),并将S9混合物Tris缓冲液校准至pH 7.8 - 8.0时,βg和ap活性及/或IFs最高。每次测定60 - 300微克NADP(标准量的10 - 50%)足以实现PAHs的最佳活化。与之前关于在没有代谢系统时SOS显色试验变异性的研究相反,使用更高的细菌密度(每次测定12 - 18×10⁶ cfu)时可获得更高的诱导因子。当使用最佳量的S9时,其他研究者推荐的离心步骤并非必要。S9混合物的代谢活性在制备后约20分钟内几乎保持恒定,但在约1小时内降至其活性的80%。