Sitkoff D, Lockhart D J, Sharp K A, Honig B
Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032.
Biophys J. 1994 Dec;67(6):2251-60. doi: 10.1016/S0006-3495(94)80709-X.
It is generally believed that the electrostatic field arising from the dipolar charge distribution in alpha helices is important for protein structure and function. We report a calculation of the electrostatic potential and field at the amino terminus of an alpha helix in water, obtained from a finite difference solution to the Poisson-Boltzmann equation. This method takes into account the detailed helix shape and charge distribution, as well as solvent, and generalized ionic strength effects. The calculated potential and field are found to be in good agreement with the experimentally observed helix-induced Stark effect and pKa shifts of a probe at the N-terminus of a stable, monomeric alpha-helical peptide (Lockhart and Kim, 1992, 1993). Ionic screening effects are reproduced at low salt concentrations. Deviations at higher salt concentrations may result from specific ion effects (specific ion-solute and/or ion-solvent interactions). The FDPB method was used to analyze the contributions from each residue, charged side chains, and solvent to the helix potential and field. Backbone contributions come primarily from the first one to two helical turns. Charged side chains contribute to helix-induced pKa shifts for certain probe-peptide combinations, even at relatively large distances from the probe (> 14 A).
一般认为,α螺旋中偶极电荷分布产生的静电场对蛋白质的结构和功能很重要。我们报告了从泊松-玻尔兹曼方程的有限差分解得出的水中α螺旋氨基末端的静电势和电场的计算结果。该方法考虑了螺旋的详细形状、电荷分布以及溶剂和广义离子强度效应。计算得到的势和场与实验观察到的螺旋诱导斯塔克效应以及稳定单体α螺旋肽N端探针的pKa位移高度一致(Lockhart和Kim,1992年,1993年)。在低盐浓度下能重现离子屏蔽效应。高盐浓度下的偏差可能是由特定离子效应(特定离子-溶质和/或离子-溶剂相互作用)导致的。有限差分泊松-玻尔兹曼(FDPB)方法用于分析每个残基、带电侧链和溶剂对螺旋势和场的贡献。主链贡献主要来自螺旋的前一到两圈。带电侧链对某些探针-肽组合的螺旋诱导pKa位移有贡献,即使距离探针相对较远(>14 Å)。