Krishnan K, Clewell H J, Andersen M E
Départment de Médecine du Travail et d'Hygiéne du Milieu, Faculté de Médecine, Université de Montréal, Canada.
Environ Health Perspect. 1994 Nov;102 Suppl 9(Suppl 9):151-5. doi: 10.1289/ehp.94102s9151.
Exposure to multiple chemicals may cause significant alterations of tissue dose of the toxic moiety of one or more of the individual chemicals. The change in target tissue dose of a chemical present in simple mixtures can be predicted when the determinants of disposition of each chemical, and the mechanism of toxicokinetic interaction between chemicals are understood at a quantitative level. Determinants of disposition include physiological (e.g., breathing rates, cardiac output, tissue volumes, blood flow rates), biochemical (e.g., kinetic constants for metabolism and protein binding), and physicochemical factors (e.g., blood air and tissue blood partition coefficients). Mechanisms of toxicokinetic interactions refer to the manner in which coexposure alters these determinants of disposition as compared to exposure to the individual chemicals. Interactions between chemicals can be described quantitatively with physiologically based pharmacokinetic (PBPK) models, which integrate these mechanic determinants and permit prediction of alterations in tissue dose for various exposure situations by computer simulation. PBPK modeling studies of binary chemical interactions conducted so far indicate that inhibitory rather than potentiating metabolic interactions are more likely to be observed during multiple chemical exposures. As PBPK models of representative binary, tertiary and quaternary mixtures are developed, it will become increasingly possible to draw reliable conclusions about the risk associated with human exposure to chemical mixtures.
接触多种化学物质可能会导致一种或多种单一化学物质的毒性部分在组织剂量上发生显著变化。当了解每种化学物质的处置决定因素以及化学物质之间的毒代动力学相互作用机制,并达到定量水平时,就可以预测简单混合物中存在的化学物质在靶组织中的剂量变化。处置决定因素包括生理学因素(如呼吸速率、心输出量、组织体积、血流速率)、生物化学因素(如代谢和蛋白质结合的动力学常数)以及物理化学因素(如血气和组织血分配系数)。毒代动力学相互作用机制是指与单独接触单一化学物质相比,共同接触如何改变这些处置决定因素。化学物质之间的相互作用可以通过基于生理学的药代动力学(PBPK)模型进行定量描述,该模型整合了这些机制决定因素,并允许通过计算机模拟预测各种接触情况下组织剂量的变化。迄今为止进行的二元化学相互作用的PBPK建模研究表明,在多种化学物质接触期间,更有可能观察到抑制性而非增强性的代谢相互作用。随着具有代表性的二元、三元和四元混合物的PBPK模型的开发,越来越有可能就人类接触化学混合物相关的风险得出可靠结论。