Hertz-Picciotto I
Department of Epidemiology, University of North Carolina School of Public Health, Chapel Hill 27599-7400, USA.
Am J Public Health. 1995 Apr;85(4):484-91. doi: 10.2105/ajph.85.4.484.
Quantitative risk assessment provides formalized scientific input to regulatory agencies that set occupational and environmental standards for potentially toxic exposures. Current practice relies heavily on statistical extrapolation from high-dose animal studies. Human data obviate the need for interspecies extrapolation and reduce the range of high-to-low dose extrapolation. This paper proposes a framework for classifying individual epidemiologic studies as to their adequacy for use in dose-response extrapolation. The framework considers five criteria: (1) a stable positive association with an adverse health outcome; (2) high overall study quality; (3) no substantial confounding; (4) quantitative exposure assessment for individuals; (5) evidence of a dose-response relationship. With these criteria, studies can be categorized as (1) suitable to serve as a basis for extrapolation; (2) inadequate to be the basis for direct extrapolation but appropriate to use for evaluating the plausibility of animal-derived risk estimates; or (3) useful only for hazard identification, not for dose-response assessment. Methods for using studies in the first two categories are briefly described. The emphasis is not on establishing rigid rules, but rather on ensuring a consistent, reliable process that makes optimum use of available data.
定量风险评估为那些制定潜在有毒暴露的职业和环境标准的监管机构提供了形式化的科学依据。当前的做法严重依赖于高剂量动物研究的统计推断。人体数据消除了种间推断的必要性,并减少了高剂量到低剂量推断的范围。本文提出了一个框架,用于将个体流行病学研究分类,以评估其在剂量反应推断中的适用性。该框架考虑五个标准:(1)与不良健康结果存在稳定的正相关;(2)整体研究质量高;(3)无实质性混杂因素;(4)对个体进行定量暴露评估;(5)存在剂量反应关系的证据。根据这些标准,研究可分为:(1)适合作为推断依据;(2)不足以作为直接推断的依据,但适合用于评估动物源风险估计的合理性;或(3)仅对危害识别有用,不适用于剂量反应评估。文中简要描述了使用前两类研究的方法。重点不在于制定严格的规则,而在于确保一个一致、可靠的过程,以最佳利用现有数据。