Suppr超能文献

基于知识的方法来维护大型受控医学术语集。

Knowledge-based approaches to the maintenance of a large controlled medical terminology.

作者信息

Cimino J J, Clayton P D, Hripcsak G, Johnson S B

机构信息

Columbia University, New York, NY, USA.

出版信息

J Am Med Inform Assoc. 1994 Jan-Feb;1(1):35-50. doi: 10.1136/jamia.1994.95236135.

Abstract

OBJECTIVE

Develop a knowledge-based representation for a controlled terminology of clinical information to facilitate creation, maintenance, and use of the terminology.

DESIGN

The Medical Entities Dictionary (MED) is a semantic network, based on the Unified Medical Language System (UMLS), with a directed acyclic graph to represent multiple hierarchies. Terms from four hospital systems (laboratory, electrocardiography, medical records coding, and pharmacy) were added as nodes in the network. Additional knowledge about terms, added as semantic links, was used to assist in integration, harmonization, and automated classification of disparate terminologies.

RESULTS

The MED contains 32,767 terms and is in active clinical use. Automated classification was successfully applied to terms for laboratory specimens, laboratory tests, and medications. One benefit of the approach has been the automated inclusion of medications into multiple pharmacologic and allergenic classes that were not present in the pharmacy system. Another benefit has been the reduction of maintenance efforts by 90%.

CONCLUSION

The MED is a hybrid of terminology and knowledge. It provides domain coverage, synonymy, consistency of views, explicit relationships, and multiple classification while preventing redundancy, ambiguity (homonymy) and misclassification.

摘要

目的

开发一种基于知识的临床信息控制术语表示法,以促进术语的创建、维护和使用。

设计

医学实体词典(MED)是一个基于统一医学语言系统(UMLS)的语义网络,具有表示多个层次结构的有向无环图。来自四个医院系统(实验室、心电图、病历编码和药房)的术语被添加为网络中的节点。作为语义链接添加的关于术语的其他知识,用于协助不同术语的整合、协调和自动分类。

结果

MED包含32767个术语并在临床中得到实际应用。自动分类已成功应用于实验室标本、实验室检查和药物的术语。该方法的一个好处是药物能自动归入药房系统中不存在的多个药理和致敏类别。另一个好处是将维护工作量减少了90%。

结论

MED是术语和知识的混合体。它提供领域覆盖、同义词、观点一致性、明确关系和多重分类,同时防止冗余、歧义(同音异义词)和错误分类。

相似文献

10
Semantic enrichment for medical ontologies.医学本体的语义丰富
J Biomed Inform. 2006 Apr;39(2):209-26. doi: 10.1016/j.jbi.2005.08.001. Epub 2005 Sep 9.

引用本文的文献

2
JAMIA at 30: looking back and forward.《美国医学信息学会杂志》创刊30周年:回顾与展望
J Am Med Inform Assoc. 2023 Dec 22;31(1):1-9. doi: 10.1093/jamia/ocad215.
3
Visual comprehension and orientation into the COVID-19 CIDO ontology.对 COVID-19 CIDO 本体的视觉理解和定位。
J Biomed Inform. 2021 Aug;120:103861. doi: 10.1016/j.jbi.2021.103861. Epub 2021 Jul 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验