Suppr超能文献

用于放射影像报告的概念建模实验。

Experiments in concept modeling for radiographic image reports.

作者信息

Bell D S, Pattison-Gordon E, Greenes R A

机构信息

Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA.

出版信息

J Am Med Inform Assoc. 1994 May-Jun;1(3):249-62. doi: 10.1136/jamia.1994.95236156.

Abstract

OBJECTIVE

Development of methods for building concept models to support structured data entry and image retrieval in chest radiography.

DESIGN

An organizing model for chest-radiographic reporting was built by analyzing manually a set of natural-language chest-radiograph reports. During model building, clinician-informaticians judged alternative conceptual structures according to four criteria: content of clinically relevant detail, provision for semantic constraints, provision for canonical forms, and simplicity. The organizing model was applied in representing three sample reports in their entirety. To explore the potential for automatic model discovery, the representation of one sample report was compared with the noun phrases derived from the same report by the CLARIT natural-language processing system.

RESULTS

The organizing model for chest-radiographic reporting consists of 62 concept types and 17 relations, arranged in an inheritance network. The broadest types in the model include finding, anatomic locus, procedure, attribute, and status. Diagnoses are modeled as a subtype of finding. Representing three sample reports in their entirety added 79 narrower concept types. Some CLARIT noun phrases suggested valid associations among subtypes of finding, status, and anatomic locus.

CONCLUSIONS

A manual modeling process utilizing explicitly stated criteria for making modeling decisions produced an organizing model that showed consistency in early testing. A combination of top-down and bottom-up modeling was required. Natural-language processing may inform model building, but algorithms that would replace manual modeling were not discovered. Further progress in modeling will require methods for objective model evaluation and tools for formalizing the model-building process.

摘要

目的

开发用于构建概念模型的方法,以支持胸部X光摄影中的结构化数据录入和图像检索。

设计

通过人工分析一组自然语言的胸部X光报告,构建了一个用于胸部X光报告的组织模型。在模型构建过程中,临床信息学家根据四个标准判断替代概念结构:临床相关细节的内容、语义约束的提供、规范形式的提供以及简单性。该组织模型被应用于完整呈现三个示例报告。为了探索自动模型发现的潜力,将一个示例报告的表示与CLARIT自然语言处理系统从同一报告中派生的名词短语进行了比较。

结果

胸部X光报告的组织模型由62种概念类型和17种关系组成,排列在一个继承网络中。模型中最宽泛的类型包括发现、解剖部位、程序、属性和状态。诊断被建模为发现的一个子类型。完整呈现三个示例报告增加了79种更具体的概念类型。一些CLARIT名词短语表明了发现、状态和解剖部位子类型之间的有效关联。

结论

利用明确规定的建模决策标准进行的手动建模过程产生了一个在早期测试中显示出一致性的组织模型。需要自上而下和自下而上建模相结合。自然语言处理可能为模型构建提供信息,但尚未发现能够取代手动建模的算法。建模的进一步进展将需要客观模型评估方法和使模型构建过程形式化的工具。

相似文献

1
Experiments in concept modeling for radiographic image reports.用于放射影像报告的概念建模实验。
J Am Med Inform Assoc. 1994 May-Jun;1(3):249-62. doi: 10.1136/jamia.1994.95236156.

引用本文的文献

1
Hot topics in artificial intelligence.人工智能领域的热门话题。
J Am Med Inform Assoc. 2025 Feb 1;32(2):265-267. doi: 10.1093/jamia/ocae324.
4
Information extraction from multi-institutional radiology reports.从多机构放射学报告中提取信息。
Artif Intell Med. 2016 Jan;66:29-39. doi: 10.1016/j.artmed.2015.09.007. Epub 2015 Oct 3.
7
Conceptual knowledge acquisition in biomedicine: A methodological review.生物医学中的概念性知识获取:方法学综述
J Biomed Inform. 2007 Oct;40(5):582-602. doi: 10.1016/j.jbi.2007.03.005. Epub 2007 Mar 27.
8
Bio-Ontology and text: bridging the modeling gap.生物本体与文本:弥合建模差距
Bioinformatics. 2006 Oct 1;22(19):2421-9. doi: 10.1093/bioinformatics/btl405. Epub 2006 Jul 26.

本文引用的文献

2
Modelling for natural language understanding.自然语言理解建模。
Proc Annu Symp Comput Appl Med Care. 1993:289-93.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验