Kisch H, Leucht S, Lichtwarck-Aschoff M, Pfeiffer U J
Department of Anaesthesiology and Surgical Intensive Care Medicine, Zentralklinikum Augsburg, FRG.
Crit Care Med. 1995 May;23(5):885-93. doi: 10.1097/00003246-199505000-00017.
Bedside monitoring of circulating blood volume has become possible with the introduction of an integrated fiberoptic monitoring system that calculates blood volume from the changes in blood concentration of indocyanine green dye 4 mins after injection. The aim of this investigation was to compare the blood volume estimate of the integrated fiberoptic monitoring system (group 1) with the standard methods of blood volume measurement using Evans blue (group 2), and indocyanine green measured photometrically (group 3).
Prospective laboratory study.
Animal laboratory of a University's institute for experimental surgery.
Eleven anesthetized, paralyzed, and mechanically ventilated piglets.
A central venous catheter was used for the injection of the indicator dyes (Evans blue and indocyanine green). A fiberoptic thermistor catheter was advanced into the thoracic aorta. The fiberoptic catheter detects indocyanine green by reflection densitometry for the estimation of blood volume of the integrated fiberoptic monitoring system. Samples for the determination of Evans blue and indocyanine green concentrations were drawn from an arterial catheter in the femoral artery over a period of 17 mins after injection.
Measurements were performed during normovolemia, hypovolemia (blood withdrawal of < or = 30 mL/kg), and hypervolemia (retransfusion of the withdrawn blood plus an infusion of 10% hydroxyethyl starch [45 mL/kg]). Linear regression, correlation, and bias were calculated for the comparison of the blood volume estimates by the fiberoptic monitoring system (group 1) vs. the total blood volume estimates using Evans blue (group 2) and indocyanine green (group 3): group 1 = 0.82.group 2-26 mL; r2 = 82.71%; r = .91; n = 40; group 1-group 2 +/- 1 SD = -435 +/- 368 mL; group 1 = 0.79.group 3 + 50 mL; r2 = 74.81%; r = .87; n = 28; group 1-group 3 +/- 1 SD = -506 +/- 374 mL.
The results demonstrate that the blood volume estimate of the fiberoptic monitoring system (group 1) correlates closely with the total blood volume measurement using Evans blue (group 2) and indocyanine green (group 3). Trapped indicator in the packed red cell column after centrifugation of the blood samples may account for an overestimation of group 2 and group 3 of approximately 10% to 14%, but there still remains a proportional difference of 10% between group 1 vs. group 2 and vs. group 3. This difference is due to the longer mixing times of group 3 (16 mins) and group 2 (17 mins), during which they are distributed in slowly exchanging blood pools. It seems that the blood volume estimate of the fiberoptic monitoring system (group 1) represents the actively circulating blood volume and may be useful for bedside monitoring.
随着一种集成光纤监测系统的引入,对循环血容量进行床旁监测已成为可能。该系统通过注射后4分钟吲哚菁绿染料血药浓度的变化来计算血容量。本研究的目的是将集成光纤监测系统(第1组)的血容量估计值与使用伊文思蓝(第2组)和光度法测定吲哚菁绿(第3组)的血容量测量标准方法进行比较。
前瞻性实验室研究。
某大学实验外科研究所的动物实验室。
11只麻醉、瘫痪并机械通气的仔猪。
使用中心静脉导管注射指示剂染料(伊文思蓝和吲哚菁绿)。将一根光纤热敏电阻导管插入胸主动脉。光纤导管通过反射光密度法检测吲哚菁绿,以估计集成光纤监测系统的血容量。注射后17分钟内,从股动脉的动脉导管采集用于测定伊文思蓝和吲哚菁绿浓度的样本。
在血容量正常、低血容量(失血≤30 mL/kg)和高血容量(回输失血量加输注10%羟乙基淀粉[45 mL/kg])期间进行测量。计算线性回归、相关性和偏差,以比较光纤监测系统(第1组)的血容量估计值与使用伊文思蓝(第2组)和吲哚菁绿(第3组)的总血容量估计值:第1组=0.82×第2组 - 26 mL;r² = 82.71%;r = 0.91;n = 40;第1组 - 第2组±1标准差=-435±368 mL;第1组=0.79×第3组 + 50 mL;r² = 74.81%;r = 0.87;n = 28;第1组 - 第3组±1标准差=-506±374 mL。
结果表明,光纤监测系统(第1组)的血容量估计值与使用伊文思蓝(第2组)和吲哚菁绿(第3组)的总血容量测量值密切相关。血液样本离心后,红细胞压积柱中捕获的指示剂可能导致第2组和第3组高估约10%至14%,但第1组与第2组和第3组之间仍存在10%的比例差异。这种差异是由于第3组(16分钟)和第2组(17分钟)的混合时间较长,在此期间它们分布在缓慢交换的血池中。光纤监测系统(第1组)的血容量估计值似乎代表了活跃循环血容量,可能有助于床旁监测。