Suppr超能文献

使用传统的慢反应热敏电阻导管监测右心室功能。

Monitoring of right ventricular function using a conventional slow response thermistor catheter.

作者信息

Lichtwarck-Aschoff M, Leucht S, Kisch H W, Zimmermann G, Blümel G, Pfeiffer U J

机构信息

Department of Anaesthesiology and Surgical Intensive Care Medicine, Zentralklinikum Augsburg, Germany.

出版信息

Intensive Care Med. 1994 May;20(5):348-53. doi: 10.1007/BF01720907.

Abstract

OBJECTIVE

To investigate whether determination of right ventricular end-diastolic volume (RVEDV) and right ventricular ejection fraction (RVEF) can be performed with reasonable accuracy and reproducibility using a conventional slow response thermistor pulmonary artery catheter (CPAC) applying an adaptive algorithm.

DESIGN

To study RVEDV and RVEF simultaneously with pulmonary artery catheters equipped with slow and fast response thermistors (FRPAC) under a broad range of cardiac output.

SETTING

Laboratory of Institute of Experimental Surgery, Technical University.

ANIMALS

11 anaesthetised piglets.

INTERVENTIONS

Hypovolemia (V-) was induced by withdrawal of blood up to 50 ml/kg, hypervolemia (V+) was produced by retransfusing blood and adding up to 30 mg/kg hydroxyethyl starch. In 5 animals in phases V- and V+ beta-adrenergic stimulation was achieved with dobutamine. Finally pulmonary artery hypertension was induced by infusion of small air bubbles.

MEASUREMENTS AND RESULTS

Cardiac output (CO), RVEDV and RVEF were determined simultaneously with FRPAC and CPAC placed in the same pulmonary artery branch. Measurements were repeated 8 times sequentially in steady state normovolemia. A total of 130 measurements could be analysed. The coefficient of variation was 6.7 +/- 4.2% for CO(FRPAC) and 4.6 +/- 1.7% for CO(CPAC); for RVEF it was 9.7 +/- 6.2% (FRPAC) and 9.9 +/- 3.9% (CPAC); for RVEDV it was 11.6 +/- 4.8% (FRPAC) and 8.54 +/- 3.2 (CPAC). Mean difference (bias) was 0.06 +/- 0.39 l/min for CO measured with both methods, 19 +/- 35 ml for RVEDV and -3.3 +/- 6.5% for RVEF. CO(CPAC) displayed a strong correlation to CO(FRPAC) (R = 0.97, p = 0.001) as well as RVEF (R for RVEF(CPAC) versus RVEF(FRPAC) = 0.90, p = 0.001). R for RVEDV(CPAC) versus RVEDV(FRPAC) was 0.67, p = 0.001. We conclude that this animal study demonstrates good agreement between RVEF and RVEDV obtained with catheters equipped with a fast response thermistor or with a conventional slow response thermistor allowing accurate monitoring of right ventricular function with a conventional pulmonary artery catheter.

摘要

目的

探讨使用传统的慢响应热敏电阻肺动脉导管(CPAC)并应用自适应算法,能否以合理的准确性和可重复性测定右心室舒张末期容积(RVEDV)和右心室射血分数(RVEF)。

设计

在广泛的心输出量范围内,使用配备慢响应和快响应热敏电阻的肺动脉导管(FRPAC)同时研究RVEDV和RVEF。

设置

技术大学实验外科研究所实验室。

动物

11只麻醉仔猪。

干预措施

通过抽取高达50 ml/kg的血液诱导低血容量(V-),通过回输血液并添加高达30 mg/kg的羟乙基淀粉产生高血容量(V+)。在5只处于V-和V+阶段的动物中,用多巴酚丁胺实现β-肾上腺素能刺激。最后通过注入小气泡诱导肺动脉高压。

测量和结果

将FRPAC和CPAC置于同一肺动脉分支中,同时测定心输出量(CO)、RVEDV和RVEF。在稳定的正常血容量状态下依次重复测量8次。总共可分析130次测量。CO(FRPAC)的变异系数为6.7±4.2%,CO(CPAC)的变异系数为4.6±1.7%;RVEF的变异系数为9.7±6.2%(FRPAC)和9.9±3.9%(CPAC);RVEDV的变异系数为11.6±4.8%(FRPAC)和8.54±3.2(CPAC)。两种方法测得的CO平均差异(偏差)为0.06±0.39 l/min,RVEDV为19±35 ml,RVEF为-3.3±6.5%。CO(CPAC)与CO(FRPAC)显示出强相关性(R = 0.97,p = 0.001),与RVEF也显示出强相关性(RVEF(CPAC)与RVEF(FRPAC)的R = 0.90,p = 0.001)。RVEDV(CPAC)与RVEDV(FRPAC)的R为0.67,p = 0.001。我们得出结论,这项动物研究表明,配备快响应热敏电阻的导管或传统慢响应热敏电阻的导管所获得的RVEF和RVEDV之间具有良好的一致性,从而可以使用传统肺动脉导管准确监测右心室功能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验