Suppr超能文献

铜螯合诱导的S-亚硝基硫醇生物活性降低。

Copper chelation-induced reduction of the biological activity of S-nitrosothiols.

作者信息

Gordge M P, Meyer D J, Hothersall J, Neild G H, Payne N N, Noronha-Dutra A

机构信息

Institute of Urology, University College London.

出版信息

Br J Pharmacol. 1995 Mar;114(5):1083-9. doi: 10.1111/j.1476-5381.1995.tb13317.x.

Abstract
  1. The effect of copper on the activity of the S-nitrosothiol compounds S-nitrosocysteine (cysNO) and S-nitrosoglutathione (GSNO) was investigated, using the specific copper chelator bathocuproine sulphonate (BCS), and human washed platelets as target cells. 2. Chelation of trace copper with BCS (10 microM) in washed platelet suspensions reduced the inhibition of thrombin-induced platelet aggregation by GSNO; however, BCS had no significant effect on the anti-aggregatory action of cysNO. BCS inhibited cyclic GMP generation in response to both cysNO and GSNO. 3. The effect of BCS was rapid (within 30 s), and could be abolished by increasing the platelet concentration to 500 x 10(9) l-1. 4. In BCS-treated platelet suspensions, the addition of Cu2+ ions (0.37-2.37 microM) led to a restoration of both guanylate cyclase activation and platelet aggregation inhibition by GSNO. 5. The anti-aggregatory activity of GSNO was reduced in a concentration-dependent manner by the copper (I)-specific chelators BCS and neocuproine, and to a smaller extent by desferal. No effect was observed with the copper (II) specific chelator, cuprizone, the iron-specific chelator, bathophenanthroline sulphonate, or the broader-specificity copper chelator, D-penicillamine. 6. In both BCS-treated and -untreated platelet suspensions, cys NO was more potent than GSNO as a stimulator of guanylate cyclase. In BCS-treated platelet suspensions there was no significant difference between the anti-aggregatory potency of cysNO and GSNO; however, in untreated suspensions, GSNO was significantly more potent than cysNO. Thus, when copper was available, GSNO produced a greater inhibition of aggregation than cysNO, despite being a less potent activator of guanylate cyclase. 7. The breakdown of cysNO and GSNO was measured spectrophotometrically by decrease in absorbance at 334 nm. In Tyrode buffer, cysNO (10 microM) broke down at a rate of 3.3 microM min-1. BCS (10 microM)reduced this to 0.5 microM min-1. GSNO, however, was stable, showing no fall in absorbance over a period of 7 min even in the absence of BCS.8. We conclude that copper is required for the activity of both cysNO and GSNO, although its influence on anti-aggregatory activity is only evident with GSNO. The stimulatory effect of copper is unlikely to be explained solely by catalysis of S-nitrosothiol breakdown. The enhancement by copper of the anti-aggregatory activity of GSNO, relative to cysNO, suggests that copper may be required for biological activity of GSNO which is independent of guanylate cyclase stimulation.
摘要
  1. 使用特定的铜螯合剂磺酸浴铜灵(BCS),并以人洗涤血小板作为靶细胞,研究了铜对S-亚硝基硫醇化合物S-亚硝基半胱氨酸(cysNO)和S-亚硝基谷胱甘肽(GSNO)活性的影响。2. 在洗涤血小板悬液中,用BCS(10微摩尔)螯合微量铜可降低GSNO对凝血酶诱导的血小板聚集的抑制作用;然而,BCS对cysNO的抗聚集作用无显著影响。BCS抑制了cysNO和GSNO诱导的环磷酸鸟苷生成。3. BCS的作用迅速(30秒内),通过将血小板浓度提高到500×10⁹/升可消除其作用。4. 在经BCS处理的血小板悬液中,添加Cu²⁺离子(0.37 - 2.37微摩尔)可使GSNO诱导的鸟苷酸环化酶激活和血小板聚集抑制作用恢复。

  2. 铜(I)特异性螯合剂BCS和新铜试剂以浓度依赖方式降低了GSNO的抗聚集活性,去铁胺的作用较小。铜(II)特异性螯合剂铜克酮、铁特异性螯合剂磺酸邻二氮菲或更具广谱性的铜螯合剂D-青霉胺均未观察到作用。6. 在经BCS处理和未处理的血小板悬液中,cysNO作为鸟苷酸环化酶的刺激剂比GSNO更有效。在经BCS处理的血小板悬液中,cysNO和GSNO的抗聚集效力无显著差异;然而,在未处理的悬液中,GSNO的效力明显高于cysNO。因此,当有铜存在时,尽管GSNO作为鸟苷酸环化酶的激活剂效力较低,但它对聚集的抑制作用比cysNO更大。7. 通过测量334纳米处吸光度的降低,用分光光度法测定cysNO和GSNO的分解。在台氏缓冲液中,cysNO(10微摩尔)以3.3微摩尔/分钟的速率分解。BCS(10微摩尔)将其降至0.5微摩尔/分钟。然而,GSNO是稳定的,即使在没有BCS的情况下,7分钟内吸光度也没有下降。8. 我们得出结论,cysNO和GSNO的活性都需要铜,尽管其对抗聚集活性的影响仅在GSNO中明显。铜的刺激作用不太可能仅通过催化S-亚硝基硫醇分解来解释。相对于cysNO,铜增强了GSNO的抗聚集活性,这表明铜可能是GSNO独立于鸟苷酸环化酶刺激的生物活性所必需的。

相似文献

1
Copper chelation-induced reduction of the biological activity of S-nitrosothiols.
Br J Pharmacol. 1995 Mar;114(5):1083-9. doi: 10.1111/j.1476-5381.1995.tb13317.x.
2
Evidence for a cyclic GMP-independent mechanism in the anti-platelet action of S-nitrosoglutathione.
Br J Pharmacol. 1998 May;124(1):141-8. doi: 10.1038/sj.bjp.0701821.
3
Role of a copper (I)-dependent enzyme in the anti-platelet action of S-nitrosoglutathione.
Br J Pharmacol. 1996 Oct;119(3):533-8. doi: 10.1111/j.1476-5381.1996.tb15704.x.
5
The synergism of hydrogen peroxide with plasma S-nitrosothiols in the inhibition of platelet activation.
Biochem J. 1996 Sep 15;318 ( Pt 3)(Pt 3):759-66. doi: 10.1042/bj3180759.
7
Influence of S-nitrosothiols and nitrate tolerance in the rat gastric fundus.
Br J Pharmacol. 1994 Apr;111(4):1280-6. doi: 10.1111/j.1476-5381.1994.tb14884.x.

引用本文的文献

2
Peptides Derived from Angiogenin Regulate Cellular Copper Uptake.
Int J Mol Sci. 2021 Sep 2;22(17):9530. doi: 10.3390/ijms22179530.
3
4
Exploiting the vulnerable active site of a copper-only superoxide dismutase to disrupt fungal pathogenesis.
J Biol Chem. 2019 Feb 22;294(8):2700-2713. doi: 10.1074/jbc.RA118.007095. Epub 2018 Dec 28.
6
S-nitrosothiols as selective antithrombotic agents - possible mechanisms.
Br J Pharmacol. 2010 Apr;159(8):1572-80. doi: 10.1111/j.1476-5381.2010.00670.x. Epub 2010 Mar 8.
7
Application of metal coordination chemistry to explore and manipulate cell biology.
Chem Rev. 2009 Oct;109(10):4921-60. doi: 10.1021/cr900134a.
8
Oxidation by trace Cu2+ ions underlies the ability of ascorbate to induce vascular dysfunction in the rat perfused mesentery.
Eur J Pharmacol. 2009 Jul 1;614(1-3):84-90. doi: 10.1016/j.ejphar.2009.04.033. Epub 2009 Apr 24.
9
Potential Benefits of Peroxynitrite.
Open Pharmacol J. 2008;2:31-53. doi: 10.2174/1874143600802010031.

本文引用的文献

1
ON THE NATURE OF COPPER IN ASCORBATE OXIDASE. I. THE VALENCE STATE OF COPPER IN THE DENATURED AND NATIVE ENZYME.
Biochim Biophys Acta. 1963 Sep 3;77:27-36. doi: 10.1016/0006-3002(63)90466-9.
3
Endogenous nitrogen oxides and bronchodilator S-nitrosothiols in human airways.
Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):10957-61. doi: 10.1073/pnas.90.23.10957.
4
Understanding the controversy over the identity of EDRF.
Nature. 1994 Mar 3;368(6466):62-5. doi: 10.1038/368062a0.
5
Biological activity of S-nitrosothiols: the role of nitric oxide.
J Pharmacol Exp Ther. 1993 Dec;267(3):1529-37.
6
Glyceraldehyde-3-phosphate dehydrogenase is required for the transport of nitric oxide in platelets.
Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11122-6. doi: 10.1073/pnas.90.23.11122.
8
Soluble guanylate cyclase purified from bovine lung contains heme and copper.
FEBS Lett. 1981 Sep 14;132(1):71-4. doi: 10.1016/0014-5793(81)80429-2.
10
Reaction of S-nitrosoglutathione with sulfhydryl groups in protein.
Biochem Biophys Res Commun. 1988 Apr 29;152(2):916-20. doi: 10.1016/s0006-291x(88)80127-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验