Suppr超能文献

病例队列设计的稳健方差估计

Robust variance estimation for the case-cohort design.

作者信息

Barlow W E

机构信息

Center for Health Studies, Group Health Cooperative, Seattle, Washington 98101-1448.

出版信息

Biometrics. 1994 Dec;50(4):1064-72.

PMID:7786988
Abstract

Large cohort studies of rare outcomes require extensive data collection, often for many relatively uninformative subjects. Sampling schemes have been proposed that oversample certain groups. For example, the case-cohort design of Prentice (1986, Biometrika 73, 1-11) provides an efficient method of analysis of failure time data. However, the variance estimate must explicitly correct for correlated score contributions. A simple robust variance estimator is proposed that allows for more complicated sampling mechanisms. The variance estimate uses a jackknife estimate of the variance of the individual influence function and is shown to be equivalent to a robust variance estimator proposed by Lin and Wei (1989, Journal of the American Statistical Association 84, 1074-1078) for the standard Cox model. Simulation results indicate excellent agreement with corrected asymptotic estimates and appropriate test size. The technique is illustrated with data evaluating the efficacy of mammography screening in reducing breast cancer mortality.

摘要

针对罕见结局的大型队列研究需要广泛收集数据,通常要涉及许多相对信息较少的受试者。已有人提出了对某些群体进行过采样的抽样方案。例如,普伦蒂斯(1986年,《生物统计学》73卷,第1 - 11页)的病例队列设计提供了一种分析失效时间数据的有效方法。然而,方差估计必须明确校正相关得分贡献。本文提出了一种简单的稳健方差估计器,它适用于更复杂的抽样机制。该方差估计使用个体影响函数方差的刀切法估计,并且被证明等同于林和魏(1989年,《美国统计协会杂志》84卷,第1074 - 1078页)为标准考克斯模型提出的稳健方差估计器。模拟结果表明,该估计与校正后的渐近估计以及适当的检验规模具有良好的一致性。本文用评估乳腺钼靶筛查降低乳腺癌死亡率疗效的数据对该技术进行了说明。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验