Tuttle J B, Steers W D, Albo M, Nataluk E
Department of Urology, University of Virginia Health Sciences Center, Charlottesville 22908.
J Auton Nerv Syst. 1994 Oct;49(2):147-58. doi: 10.1016/0165-1838(94)90134-1.
To gain insight into the effect of innervation on neurotrophin production, NGF levels in the urinary bladder were measured following unilateral ganglionectomy (bladder denervation) or separation of the post-ganglionic bladder neurons from the central nervous system of the adult rat (bladder and ganglion decentralization). These interruptions of the neural input to half of the bladder caused histological evidence of smooth muscle growth, increased bladder weight (denervation-3 weeks: 98.6 +/- 6 mg; decentralization-3 weeks: 94.0 +/- 7 mg vs. control: 79.6 +/- 4 mg, P < 0.05), transient increases in tissue NGF up to 10-fold (1.99 +/- 0.65 pg NGF/bladder control vs. 20.24 +/- 0.53 (P < 0.05) denervated, ipsilateral, 1 week) and hypertrophy of the neurons in the pelvic ganglia supplying the bladder (control: 340 +/- 4.4 microns2; denervated-3 weeks: 530 +/- 6.8 microns2, P < 0.05; decentralized-3 weeks: 463 +/- 6.8 microns2, P < 0.05). These data suggest that neural input has a significant role in regulating growth of the bladder. Furthermore, the findings show that innervation influences tissue levels of NGF in the bladder.