Beckers C J, Roos D S, Donald R G, Luft B J, Schwab J C, Cao Y, Joiner K A
Department of Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8022.
J Clin Invest. 1995 Jan;95(1):367-76. doi: 10.1172/JCI117665.
We investigated potential targets for the activity of protein synthesis inhibitors against the protozoan parasite Toxoplasma gondii. Although nanomolar concentrations of azithromycin and clindamycin prevent replication of T. gondii in both cell culture and in vivo assays, no inhibition of protein labeling was observed in either extracellular or intracellular parasites treated with up to 100 microM drug for up to 24 h. Quantitative analysis of > 300 individual spots on two-dimensional gels revealed no proteins selectively depleted by 100 microM azithromycin. In contrast, cycloheximide inhibited protein synthesis in a dose-dependent manner. Nucleotide sequence analysis of the peptidyl transferase region from genes encoding the large subunit of the parasite's ribosomal RNA predict that the cytoplasmic ribosomes of T. gondii, like other eukaryotic ribosomes, should be resistant to macrolide antibiotics. Combining cycloheximide treatment with two-dimensional gel analysis revealed a small subset of parasite proteins likely to be synthesized on mitochondrial ribosomes. Synthesis of these proteins was inhibited by 100 microM tetracycline, but not by 100 microM azithromycin or clindamycin. Ribosomal DNA sequences believed to be derived from the T. gondii mitochondrial genome predict macrolide/lincosamide resistance. PCR amplification of total T. gondii DNA identified an additional class of prokaryotic-type ribosomal genes, similar to the plastid-like ribosomal genes of the Plasmodium falciparum. Ribosomes encoded by these genes are predicted to be sensitive to the lincosamide/macrolide class of antibiotics, and may serve as the functional target for azithromycin, clindamycin, and other protein synthesis inhibitors in Toxoplasma and related parasites.
我们研究了蛋白质合成抑制剂对原生动物寄生虫刚地弓形虫的潜在作用靶点。尽管纳摩尔浓度的阿奇霉素和克林霉素在细胞培养和体内试验中均可阻止刚地弓形虫的复制,但在用高达100微摩尔药物处理长达24小时的细胞外或细胞内寄生虫中,均未观察到蛋白质标记受到抑制。对二维凝胶上300多个单独斑点的定量分析显示,没有蛋白质被100微摩尔阿奇霉素选择性耗尽。相比之下,环己酰亚胺以剂量依赖的方式抑制蛋白质合成。对编码寄生虫核糖体RNA大亚基的基因的肽基转移酶区域进行核苷酸序列分析预测,刚地弓形虫的细胞质核糖体与其他真核核糖体一样,应该对大环内酯类抗生素具有抗性。将环己酰亚胺处理与二维凝胶分析相结合,发现一小部分寄生虫蛋白可能在线粒体核糖体上合成。这些蛋白质的合成被100微摩尔四环素抑制,但未被100微摩尔阿奇霉素或克林霉素抑制。据信源自刚地弓形虫线粒体基因组的核糖体DNA序列预测其对大环内酯/林可酰胺具有抗性。对刚地弓形虫总DNA进行PCR扩增,鉴定出另一类原核生物型核糖体基因,类似于恶性疟原虫的质体样核糖体基因。由这些基因编码的核糖体预计对林可酰胺/大环内酯类抗生素敏感,并且可能是阿奇霉素、克林霉素和其他蛋白质合成抑制剂在弓形虫及相关寄生虫中的功能靶点。