Suppr超能文献

通过质谱法分析蛋白质糖基化

Analysis of protein glycosylation by mass spectrometry.

作者信息

Nilsson B

机构信息

National Defense Research Establishment, NBC Department, Umeå, Sweden.

出版信息

Mol Biotechnol. 1994 Dec;2(3):243-80. doi: 10.1007/BF02745880.

Abstract

There is a growing pharmaceutical market for protein-based drugs for use in therapy and diagnosis. The rapid developments in molecular and cell biology have resulted in production of expression systems for manufacturing of recombinant proteins and monoclonal antibodies. These proteins are glycosylated when expressed in cell systems with glycosylation ability. For glycoproteins intended for therapeutic administration it is important to have knowledge about the structure of the carbohydrate side chains to avoid cell systems that produce structures, which in humans can cause undesired reactions, e.g., immunological and unfavorable serum clearance rate. Structural analysis of glycoprotein oligosaccharides requires sophisticated instruments like mass spectrometers and nuclear magnetic resonance spectrometers. However, before the structural analysis can be conducted, the carbohydrate chains have to be released from the protein and purified to homogeneity, and this is often the most time-consuming step. Mass spectrometry has played and still plays an important role in analysis of protein glycosylation. The superior sensitivity compared to other spectroscopic methods is its main asset. Structural analysis of carbohydrates faces several problems, however, due to the chemical nature of the constituent monosaccharide residues. For oligosaccharides or glycoconjugates, the structural information from mass spectrometry is essentially limited to monosaccharide sequence, molecular weight, an only in exceptional cases glycosidic linkage positions can be obtained. In order to completely establish an oligosaccharide structure, several other structural parameters have to be determined, e.g., linkage positions, anomeric configuration and identification of the monosaccharide building blocks. One way to address some of these problems is to work on chemical pretreatment of the glycoconjugate, to specifically modify the carbohydrate chain. In order to introduce specific modifications, we have used periodate oxidation and trifluoroacetolysis with the objective of determining glycosidic linkage positions by mass spectrometry.

摘要

用于治疗和诊断的蛋白质类药物的制药市场正在不断增长。分子生物学和细胞生物学的快速发展催生了用于生产重组蛋白和单克隆抗体的表达系统。这些蛋白质在具有糖基化能力的细胞系统中表达时会发生糖基化。对于用于治疗给药的糖蛋白,了解碳水化合物侧链的结构很重要,以避免使用产生在人体内会引起不良反应(例如免疫反应和不利的血清清除率)的结构的细胞系统。糖蛋白寡糖的结构分析需要质谱仪和核磁共振光谱仪等精密仪器。然而,在进行结构分析之前,必须将碳水化合物链从蛋白质中释放出来并纯化至同质,而这通常是最耗时的步骤。质谱在蛋白质糖基化分析中一直并仍在发挥重要作用。与其他光谱方法相比,其卓越的灵敏度是其主要优势。然而,由于组成单糖残基的化学性质,碳水化合物的结构分析面临几个问题。对于寡糖或糖缀合物,质谱提供的结构信息基本上仅限于单糖序列、分子量,只有在特殊情况下才能获得糖苷键位置。为了完全确定寡糖结构,还必须确定其他几个结构参数,例如连接位置、异头构型和单糖组成单元的鉴定。解决其中一些问题的一种方法是对糖缀合物进行化学预处理,以特异性修饰碳水化合物链。为了引入特定的修饰,我们使用了高碘酸盐氧化和三氟乙酰解,目的是通过质谱确定糖苷键位置。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验