Suppr超能文献

Binding of human high-molecular-weight salivary mucins (MG1) to Hemophilus parainfluenzae.

作者信息

Veerman E C, Ligtenberg A J, Schenkels L C, Walgreen-Weterings E, Nieuw Amerongen A V

机构信息

Department of Oral Biochemistry, Vrije Universiteit, Amsterdam, The Netherlands.

出版信息

J Dent Res. 1995 Jan;74(1):351-7. doi: 10.1177/00220345950740011101.

Abstract

In human saliva, two different mucin populations can be distinguished, viz., high-molecular-weight mucins (MG1, mol. wt > 1 x 10(6)) and low-molecular-weight mucins (MG2, mol. wt approximately 125 kD). The carbohydrate moiety of MG1 displays a wide spectrum of oligosaccharide structures, varying in composition, length, branching, and acidity. The biological significance of the heterogeneity in carbohydrate structures of mucins is unclear. The present investigation focused on the question whether MG1, because of its diverse carbohydrate side-chain population, can bind to a large variety of oral micro-organisms. A replica plate technique, in combination with immunochemical detection with monoclonal antibodies against MG1, was used to screen in vivo human oral microflora for the presence of micro-organisms which could bind the high-molecular-weight salivary mucin MG1. Binding to purified MG1 was established for Hemophilus (para)influenzae species, whereas other species, including Streptococcus and Staphylococcus, were negative. MG1 binding to Hemophilus parainfluenzae could be abolished by protease treatment of MG1. In contrast, periodate acid treatment, partial deglycosylation, or addition of monosaccharides did not affect MG1 binding to H. parainfluenzae, indicating that MG1 carbohydrate side-chains were not directly involved in the binding. The binding was pH-dependent, showing an increase when the pH was lowered from 8.0 to 4.0. These data indicate that MG1 can be bound in a selective manner by Hemophilus spp. and suggest that the 'naked' unglycosylated polypeptide moiety of MG1 is involved in its binding to Hemophilus parainfluenzae.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验