de Boer R J, Boerlijst M C
Utrecht University, The Netherlands.
Proc Natl Acad Sci U S A. 1994 Jan 18;91(2):544-8. doi: 10.1073/pnas.91.2.544.
We propose a model for the interaction between human immunodeficiency virus and the immune system. Two differential equations describe the interactions between one strain of virus and one clone of T lymphocytes. We use the model to generalize earlier results pertaining to the AIDS diversity threshold [Nowak, M. A., Anderson, R. M., McLean, A. R., Wolfs, T. F. W., Goudsmit, J. and May, R. M. (1991) Science 254, 963-969]. Our model has (i) a stable steady state corresponding to the "controlled" persistence of the virus and (ii) a region corresponding to AIDS. The separatrix between the two regimes is formed by the stable manifold of a saddle point. We define a dimensionless "virulence" parameter which combines the infectivity and antigenicity of a virus strain. We derive analytically two parameter conditions involving virulence. The first corresponds to a saddle-node bifurcation which causes AIDS due to the loss of the stable equilibrium. The second corresponds to a global bifurcation which causes AIDS due to a change in the basins of attraction. Incorporating diversity into the model, we derive a diversity threshold corresponding to the saddle-node bifurcation. In this threshold condition diversity and virulence have an equivalent effect. By studying the effect of diversity on the critical virulence that is required for a new mutant to cause AIDS, we again establish that diversity and virulence are equivalent parameters. Because in our model increasing diversity decreases the critical virulence, the strain that eventually causes AIDS need not be a virulent one.
我们提出了一个关于人类免疫缺陷病毒与免疫系统相互作用的模型。两个微分方程描述了一种病毒株与一个T淋巴细胞克隆之间的相互作用。我们使用该模型推广了早期关于艾滋病多样性阈值的结果[诺瓦克,M. A.,安德森,R. M.,麦克林,A. R.,沃尔夫斯,T. F. W.,古德斯密特,J. 和梅,R. M.(1991)《科学》254,963 - 969]。我们的模型具有(i)一个对应于病毒“受控”持续存在的稳定稳态,以及(ii)一个对应于艾滋病的区域。两种状态之间的分界线由一个鞍点的稳定流形形成。我们定义了一个无量纲的“毒力”参数,它结合了病毒株的传染性和抗原性。我们通过分析得出了两个涉及毒力的参数条件。第一个对应于一个鞍结分岔,它由于稳定平衡的丧失而导致艾滋病。第二个对应于一个全局分岔,它由于吸引盆的变化而导致艾滋病。将多样性纳入模型后,我们得出了对应于鞍结分岔的多样性阈值。在这个阈值条件下,多样性和毒力具有等效作用。通过研究多样性对新突变体导致艾滋病所需的临界毒力的影响,我们再次确定多样性和毒力是等效参数。因为在我们的模型中增加多样性会降低临界毒力,所以最终导致艾滋病的毒株不一定是毒力强的毒株。