Eliot L S, Kandel E R, Hawkins R D
Center for Neurobiology and Behavior, College of Physicians and Surgeons of Columbia University, New York, New York 10032.
J Neurosci. 1994 May;14(5 Pt 2):3280-92. doi: 10.1523/JNEUROSCI.14-05-03280.1994.
An Aplysia motor neuron cocultured with a single presynaptic sensory neuron exhibits spontaneous miniature EPSPs or EPSCs ("minis") that can be used to assay the release process directly, independent of the presynaptic action potential. Sensory-motor synapses in culture undergo homosynaptic depression with low frequency stimulation (< 1 Hz) and posttetanic potentiation (PTP) with high-frequency stimulation (20 Hz) much as they do in intact ganglia, except that PTP does not occur in culture when sensory neurons are impaled. We measured spontaneous release during each of these two forms of homosynaptic plasticity as a way of testing whether they involve depletion or mobilization of synaptic vesicles (Gingrich and Byrne, 1985). We find that PTP is accompanied by an increase in mini frequency that decays with a time course parallel to the decay of evoked EPSP facilitation. In contrast, depression is not paralleled by a reduction of mini frequency, although extensive stimulation reduces mini frequency for a brief period immediately following stimulation. Neither form of plasticity altered miniature EPSP or miniature EPSC amplitude, corroborating previous evidence that both are presynaptically mediated. These findings suggest that PTP is mediated by a presynaptic mechanism independent of the action potential, such as vesicle mobilization. This presumably Ca(2+)-dependent mechanism does not involve protein kinase C, since we found that the inhibitor H7 does not specifically block PTP. In contrast to PTP, depression appears to involve changes unique to excitation-secretion coupling, such as reduced Ca2+ influx during the action potential (Klein et al., 1980).
与单个突触前感觉神经元共培养的海兔运动神经元表现出自发性微小兴奋性突触后电位或兴奋性突触后电流(“微小突触后电位”),可用于直接测定释放过程,而不依赖于突触前动作电位。培养中的感觉运动突触与完整神经节中的情况一样,在低频刺激(<1Hz)下会经历同突触抑制,在高频刺激(20Hz)下会经历强直后增强(PTP),只是当感觉神经元被刺入时,培养中不会出现PTP。我们测量了这两种同突触可塑性形式期间的自发释放,以此来测试它们是否涉及突触小泡的耗竭或动员(金里奇和伯恩,1985年)。我们发现,PTP伴随着微小突触后电位频率的增加,其衰减的时间进程与诱发的兴奋性突触后电位易化的衰减平行。相比之下,抑制并没有伴随着微小突触后电位频率的降低,尽管广泛的刺激在刺激后短时间内会降低微小突触后电位频率。这两种可塑性形式都没有改变微小兴奋性突触后电位或微小兴奋性突触后电流的幅度,这证实了之前的证据,即两者都是由突触前介导的。这些发现表明,PTP是由一种独立于动作电位的突触前机制介导的,比如小泡动员。这种可能依赖Ca(2+)的机制不涉及蛋白激酶C,因为我们发现抑制剂H7并不能特异性地阻断PTP。与PTP不同,抑制似乎涉及兴奋-分泌偶联特有的变化,比如动作电位期间Ca2+内流减少(克莱因等人,1980年)。