Suzuki K, Toda S, Furumai T, Fukagawa Y, Oki T
Bristol-Myers Squibb Research Institute, Tokyo, Japan.
J Antibiot (Tokyo). 1994 Sep;47(9):982-91. doi: 10.7164/antibiotics.47.982.
Accurate and precise component analysis of eurystatin analogs in fermentation broth was devised by HPLC methods with and without 2,4-dinitrophenylhydrazonation. Detailed optimization of fermentation conditions and strain improvement by HPLC analysis significantly increased the eurystatin productivity of Streptomyces eurythermus. Chemically defined fermentation media which produced eurystatins A and B at fermentation yields comparable to complex media were elaborated for radio-isotope fermentation studies and controlled biosynthesis. Radio-isotope incorporation study using 14C-labeled amino acids in chemically defined medium demonstrated that L-leucine and L-ornithine were the direct precursors for the L-leucine and L-ornithine moieties of eurystatins A and B, respectively. Based on this finding, L-valine and L-isoleucine were supplemented to the growing culture of S. eurythermus in chemically defined medium, which resulted in the controlled biosynthesis of new eurystatin analogs named eurystatins C, D, E and F.
通过采用和不采用2,4-二硝基苯腙化反应的高效液相色谱法,设计出了对发酵液中欧瑞他汀类似物进行准确且精确的成分分析方法。通过高效液相色谱分析对发酵条件进行详细优化和菌株改良,显著提高了嗜温链霉菌的欧瑞他汀产量。为进行放射性同位素发酵研究和可控生物合成,精心制备了化学成分明确的发酵培养基,其产生的欧瑞他汀A和B的发酵产量与复杂培养基相当。在化学成分明确的培养基中使用14C标记氨基酸进行的放射性同位素掺入研究表明,L-亮氨酸和L-鸟氨酸分别是欧瑞他汀A和B中L-亮氨酸和L-鸟氨酸部分的直接前体。基于这一发现,在化学成分明确的培养基中向嗜温链霉菌的生长培养物中添加L-缬氨酸和L-异亮氨酸,从而实现了名为欧瑞他汀C、D、E和F的新型欧瑞他汀类似物的可控生物合成。