Suppr超能文献

体内蛋白质折叠中动力学校对的统计力学

Statistical mechanics of kinetic proofreading in protein folding in vivo.

作者信息

Gulukota K, Wolynes P G

机构信息

Division of Biophysics, University of Illinois, Urbana 61801.

出版信息

Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9292-6. doi: 10.1073/pnas.91.20.9292.

Abstract

The statistical energy landscape picture of protein folding has led to the understanding that the energy landscape must have guiding forces leading to a protein folding funnel in order to avoid the Levinthal paradox in vitro. Since folding in vivo often requires the action of chaperone molecules and ATP hydrolysis, we must ask whether folding in a system maintained away from equilibrium can avoid the Levinthal paradox in other ways. We describe a model of the action of chaperone molecules in protein folding in vivo on the basis of a repetitive cycle of binding and unbinding, allowing the possibility of kinetic proofreading. We also study models in which chaperone binding is locally biased, depending on the similarity of the conformation to the native one. We show that while kinetic proofreading can modestly facilitate folding, it is insufficient by itself to overcome the Levinthal paradox. On the other hand, such kinetic proofreading with biasing can provide the nonequilibrium analog of a folding funnel and greatly enhance folding yields and speed up folding.

摘要

蛋白质折叠的统计能量景观图使人们认识到,能量景观必须具有引导力,从而形成蛋白质折叠漏斗,以便在体外避免莱文塔尔悖论。由于体内折叠通常需要伴侣分子的作用和ATP水解,我们必须思考在远离平衡态的系统中进行折叠是否能以其他方式避免莱文塔尔悖论。我们基于结合和解离的重复循环描述了一种伴侣分子在体内蛋白质折叠中作用的模型,这使得动力学校对成为可能。我们还研究了伴侣分子结合存在局部偏向性的模型,这种偏向性取决于构象与天然构象的相似性。我们表明,虽然动力学校对可以适度促进折叠,但仅凭它自身不足以克服莱文塔尔悖论。另一方面,这种带有偏向性的动力学校对可以提供折叠漏斗的非平衡态类似物,并极大地提高折叠产率和加快折叠速度。

相似文献

2
Chaperonin-mediated protein folding.伴侣蛋白介导的蛋白质折叠。
Annu Rev Biophys Biomol Struct. 2001;30:245-69. doi: 10.1146/annurev.biophys.30.1.245.
3
A simple model of chaperonin-mediated protein folding.伴侣蛋白介导的蛋白质折叠的简单模型。
Proteins. 1996 Mar;24(3):345-51. doi: 10.1002/(SICI)1097-0134(199603)24:3<345::AID-PROT7>3.0.CO;2-F.
5
Exploring the Levinthal limit in protein folding.探索蛋白质折叠中的莱文索尔极限。
J Biol Phys. 2017 Mar;43(1):15-30. doi: 10.1007/s10867-016-9431-6. Epub 2016 Oct 14.
7
Energy barriers, cooperativity, and hidden intermediates in the folding of small proteins.小蛋白质折叠过程中的能垒、协同性和隐藏中间体
Biochem Biophys Res Commun. 2006 Feb 17;340(3):976-83. doi: 10.1016/j.bbrc.2005.12.093. Epub 2005 Dec 27.
9
Cunning simplicity of protein folding landscapes.蛋白质折叠景观的巧妙简洁性。
Protein Eng. 2001 Aug;14(8):521-3. doi: 10.1093/protein/14.8.521.
10
Dynamics, flexibility, and allostery in molecular chaperonins.分子伴侣蛋白中的动力学、灵活性与变构效应
FEBS Lett. 2015 Sep 14;589(19 Pt A):2522-32. doi: 10.1016/j.febslet.2015.06.019. Epub 2015 Jun 30.

引用本文的文献

3
Frustration in biomolecules.生物分子中的挫折感。
Q Rev Biophys. 2014 Nov;47(4):285-363. doi: 10.1017/S0033583514000092. Epub 2014 Sep 16.
7
Reconciling theories of chaperonin accelerated folding with experimental evidence.协调分子伴侣加速折叠理论与实验证据。
Cell Mol Life Sci. 2010 Jan;67(2):255-76. doi: 10.1007/s00018-009-0164-6. Epub 2009 Oct 23.
10
GroEL-mediated protein folding: making the impossible, possible.GroEL介导的蛋白质折叠:化不可能为可能。
Crit Rev Biochem Mol Biol. 2006 Jul-Aug;41(4):211-39. doi: 10.1080/10409230600760382.

本文引用的文献

5
Theoretical studies of protein folding.蛋白质折叠的理论研究。
Annu Rev Biophys Bioeng. 1983;12:183-210. doi: 10.1146/annurev.bb.12.060183.001151.
7
Principles that govern the folding of protein chains.指导蛋白质链折叠的原则。
Science. 1973 Jul 20;181(4096):223-30. doi: 10.1126/science.181.4096.223.
8
Spin glasses and the statistical mechanics of protein folding.自旋玻璃与蛋白质折叠的统计力学
Proc Natl Acad Sci U S A. 1987 Nov;84(21):7524-8. doi: 10.1073/pnas.84.21.7524.
9
Heat shock proteins.热休克蛋白
J Biol Chem. 1990 Jul 25;265(21):12111-4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验