Suppr超能文献

细菌趋化作用期间膜电位的变化。

Change in membrane potential during bacterial chemotaxis.

作者信息

Szmelcman S, Adler J

出版信息

Proc Natl Acad Sci U S A. 1976 Dec;73(12):4387-91. doi: 10.1073/pnas.73.12.4387.

Abstract

To find out if there are changes in membrane potential during bacterial chemotaxis, we measured the membrane potential of Escherichia coli indirectly by use of the permeating, lipid-soluble cation triphenylmethylphosphonium. Addition of attractants or repellents to the bacteria brought about a hyperpolarizing peak (as well as additional, later changes in membrane potential). This peak was shown to be a part of the chemotactic mechanism based on the following evidence: (i) All attractants and repellents tested gave this peak while chemotactically inert chemicals did not. (ii) Mutants lacking galactose taxis failed to give the peak with galactose but did with another attractant and with repellents. (iii) Methionine, required for chemotaxis, is also required for production of this peak. (iv) A mutant in a control gene )flaI), unable to synthesize flagella and cytoplasmic membrane proteins related to motility and chemotaxis, failed to give the peak. (v) Paralyzed (mot) mutants gave little or none of the peak. Generally nonchemotactic (che) mutants, on the other hand, did give this peak. Very likely there are ion fluxes that bring about this change in membrane potential. We discuss the possible role of the mot gene product as an ion gate controlled by a methylation-demethylation process in response to attractants and repellents acting through their chemoreceptors.

摘要

为了确定细菌趋化作用过程中膜电位是否发生变化,我们使用可渗透的脂溶性阳离子三苯基甲基溴化磷间接测量了大肠杆菌的膜电位。向细菌中添加引诱剂或驱避剂会产生一个超极化峰(以及随后膜电位的其他变化)。基于以下证据,该峰被证明是趋化机制的一部分:(i)所有测试的引诱剂和驱避剂都会产生这个峰,而趋化惰性化学物质则不会。(ii)缺乏半乳糖趋化性的突变体在接触半乳糖时不会产生该峰,但在接触另一种引诱剂和驱避剂时会产生。(iii)趋化作用所需的甲硫氨酸也是产生这个峰所必需的。(iv)一个控制基因(flaI)发生突变的菌株,无法合成与运动性和趋化性相关的鞭毛和细胞质膜蛋白,不会产生该峰。(v)麻痹的(mot)突变体几乎不产生或不产生该峰。另一方面,一般的非趋化性(che)突变体确实会产生这个峰。很可能存在离子通量导致膜电位的这种变化。我们讨论了mot基因产物作为离子通道的可能作用,该通道由甲基化 - 去甲基化过程控制,以响应通过其化学感受器起作用的引诱剂和驱避剂。

相似文献

1
Change in membrane potential during bacterial chemotaxis.细菌趋化作用期间膜电位的变化。
Proc Natl Acad Sci U S A. 1976 Dec;73(12):4387-91. doi: 10.1073/pnas.73.12.4387.
5
Sensory adaptation mutants of E. coli.大肠杆菌的感觉适应突变体。
Cell. 1978 Dec;15(4):1221-30. doi: 10.1016/0092-8674(78)90048-x.

引用本文的文献

4
Bacterial chemotaxis: the early years of molecular studies.细菌趋化性:分子研究的早期阶段。
Annu Rev Microbiol. 2012;66:285-303. doi: 10.1146/annurev-micro-092611-150120.
5
Cellulase, clostridia, and ethanol.纤维素酶、梭菌与乙醇。
Microbiol Mol Biol Rev. 2005 Mar;69(1):124-54. doi: 10.1128/MMBR.69.1.124-154.2005.
7
Oxygen taxis and proton motive force in Azospirillum brasilense.巴西固氮螺菌中的趋氧性与质子动力
J Bacteriol. 1996 Sep;178(17):5199-204. doi: 10.1128/jb.178.17.5199-5204.1996.

本文引用的文献

2
Bioelectric control of ciliary activity.纤毛活动的生物电控制。
Science. 1972 May 5;176(4034):473-81. doi: 10.1126/science.176.4034.473.
6
Chemoreceptors in bacteria.细菌中的化学感受器
Science. 1969 Dec 26;166(3913):1588-97. doi: 10.1126/science.166.3913.1588.
10
Temporal stimulation of chemotaxis in Escherichia coli.大肠杆菌趋化性的时间刺激
Proc Natl Acad Sci U S A. 1974 Apr;71(4):1388-92. doi: 10.1073/pnas.71.4.1388.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验