Suppr超能文献

四种问题列表编码方案的比较。

A comparison of four schemes for codification of problem lists.

作者信息

Campbell J R, Payne T H

机构信息

University of Nebraska Medical Center, Omaha.

出版信息

Proc Annu Symp Comput Appl Med Care. 1994:201-5.

Abstract

We set out to evaluate the completeness of four major coding schemes in representation of the patient problem list: the Unified Medical Language System (UMLS, 4th edition), the Systematized Nomenclature of Medicine (SNOMED International), the Read coding system (version 2), and the International Classification of Diseases (9th Clinical Modification)(ICD-9-CM). We gathered 400 problems from patient records at primary care sites in Omaha and Seattle. Matching these against the best description found in each of the coding schemes, we asked five medical faculty reviewers to rate the matches on a five-point Likert scale assessing their satisfaction with the results. For the four schemes, we computed the following rates of dissatisfaction, satisfaction, and average scores: [table: see text] From this analysis, we conclude that UMLS and SNOMED performed substantially better in capturing the clinical content of the problem lists than READ or ICD-9-CM. No scheme could be considered comprehensive. Depending on the goal of systems developers, UMLS and SNOMED may offer different, and complementary, advantages.

摘要

我们着手评估四种主要编码方案在呈现患者问题清单方面的完整性

统一医学语言系统(UMLS,第4版)、医学系统命名法(国际版SNOMED)、Read编码系统(第2版)以及国际疾病分类(第9版临床修订本)(ICD-9-CM)。我们从奥马哈和西雅图的基层医疗点的患者记录中收集了400个问题。将这些问题与每种编码方案中找到的最佳描述进行匹配后,我们请五位医学教师评审员根据五点李克特量表对匹配情况进行评分,以评估他们对结果的满意度。对于这四种方案,我们计算了以下不满意率、满意率和平均得分:[表格:见原文] 从该分析中,我们得出结论,在捕捉问题清单的临床内容方面,UMLS和SNOMED的表现明显优于READ或ICD-9-CM。没有一种方案可被视为全面的。根据系统开发者的目标,UMLS和SNOMED可能会提供不同但互补的优势。

相似文献

引用本文的文献

6
Birth month affects lifetime disease risk: a phenome-wide method.出生月份影响一生的疾病风险:一种全表型组方法。
J Am Med Inform Assoc. 2015 Sep;22(5):1042-53. doi: 10.1093/jamia/ocv046. Epub 2015 Jun 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验