Suppr超能文献

大肠杆菌K-12的锰超氧化物歧化酶与DNA相关联。

The manganese superoxide dismutase of Escherichia coli K-12 associates with DNA.

作者信息

Steinman H M, Weinstein L, Brenowitz M

机构信息

Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461.

出版信息

J Biol Chem. 1994 Nov 18;269(46):28629-34.

PMID:7961811
Abstract

Superoxide dismutases (SODs) are vital components in the resistance of aerobic organisms to the toxicity of oxygen. Escherichia coli contains two highly homologous cytoplasmic SODs, a manganese- and an iron-containing enzyme (MnSOD, FeSOD). We previously demonstrated that MnSOD and FeSOD have different physiological functions and that MnSOD is more effective in preventing oxidative damage to DNA. In this report, purified E. coli MnSOD was shown to bind nonspecifically to DNA by electrophoretic mobility shift assay and nitrocellulose-filter binding methodologies. From electrophoretic mobility shift assay, the equilibrium dissociation constants for interaction with a variety of double-stranded and single-stranded oligonucleotides ranged from 1.5 +/- 0.2 to 8.4 +/- 1.3 microM at 20 degrees C. This range of concentrations corresponds to MnSOD concentrations in aerobically grown E. coli. In vivo binding of MnSOD to DNA was supported by colocalization of MnSOD and the E. coli nucleoid in immunoelectron microscopy. Both MnSOD and DNA were inhomogeneously distributed in the cytosol, the concentration of each being higher in the center of the cell and relatively low near the inner membrane. In contrast, there was no evidence for physiologically relevant interaction of FeSOD with DNA. Binding to DNA in vitro was weak, Kd > 40-220 microM, concentrations 7-40 times higher than found in vivo. In addition, the cytoplasmic distribution of FeSOD did not correlate with DNA. FeSOD concentration was higher near the inner membrane and lower in the center of the cytosol. These results demonstrate that E. coli MnSOD associates with DNA in vitro and in vivo. Combined with prior data demonstrating that MnSOD preferentially protects DNA in vivo while an equal enzymatic activity of FeSOD does not (Hopkin, K. A., Papazian, M. A., and Steinman, H. M. (1992) J. Biol. Chem. 267, 24253-24258), our data suggest that E. coli MnSOD acts as a "tethered antioxidant"; association of MnSOD with DNA localizes dismutase activity near a target of oxidative stress and increases protection of DNA from oxidative damage. This model has implications for the therapeutic use of SODs as antioxidants.

摘要

超氧化物歧化酶(SODs)是需氧生物抵抗氧毒性的重要组成部分。大肠杆菌含有两种高度同源的胞质SOD,一种含锰酶和一种含铁酶(MnSOD,FeSOD)。我们先前证明MnSOD和FeSOD具有不同的生理功能,并且MnSOD在预防DNA氧化损伤方面更有效。在本报告中,通过电泳迁移率变动分析和硝酸纤维素滤膜结合方法表明,纯化的大肠杆菌MnSOD可与DNA非特异性结合。从电泳迁移率变动分析来看,在20℃下,与各种双链和单链寡核苷酸相互作用的平衡解离常数范围为1.5±0.2至8.4±1.3μM。该浓度范围对应于需氧生长的大肠杆菌中的MnSOD浓度。免疫电子显微镜下MnSOD与大肠杆菌类核的共定位支持了MnSOD在体内与DNA的结合。MnSOD和DNA在胞质溶胶中分布不均匀,两者在细胞中心的浓度较高,在内膜附近相对较低。相比之下,没有证据表明FeSOD与DNA存在生理相关的相互作用。其在体外与DNA的结合较弱,Kd>40 - 220μM,浓度比体内高7 - 40倍。此外,FeSOD的胞质分布与DNA不相关。FeSOD浓度在内膜附近较高,在胞质溶胶中心较低。这些结果表明,大肠杆菌MnSOD在体外和体内均与DNA结合。结合先前的数据表明MnSOD在体内优先保护DNA,而同等酶活性的FeSOD则不然(Hopkin,K. A.,Papazian,M. A.,和Steinman,H. M.(1992)J. Biol. Chem. 267,24253 - 24258),我们的数据表明大肠杆菌MnSOD作为一种“束缚型抗氧化剂”;MnSOD与DNA的结合将歧化酶活性定位在氧化应激靶点附近,并增强了对DNA氧化损伤的保护。该模型对SOD作为抗氧化剂的治疗应用具有启示意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验