Suppr超能文献

核糖体突变对温度敏感型氨酰-tRNA合成酶突变的抑制作用:一种可能的机制。

Suppression of temperature-sensitive aminoacyl-tRNA synthetase mutations by ribosomal mutations: a possible mechanism.

作者信息

Buckel P, Piepersberg W, Böck A

出版信息

Mol Gen Genet. 1976 Nov 24;149(1):51-61. doi: 10.1007/BF00275960.

Abstract

The biochemical basis of suppression of a temperature-sensitive alanyl-tRNA synthetase (alaS) mutation by mutational alterations of the ribosome has been investigated. Measurement of the polyU-dependent polyphenylalanine synthesis showed that ribosomes from the suppressor strains are less active than ribosomes from the unsuppressed aminoacyl-tRNA synthetase mutant. In this system no increased translational ambiguity could be detected for the suppressor ribosomes. This fact and also the findings that the ram-1 mutation is not able to suppress the aminoacyl-tRNA synthetase mutation and that presence of the suppressor allele is not accompanied by a measureably improved alanyl-tRNA synthetase activity argue against the possibility that suppression might be due to increased translational misreading rates of the alanyl-tRNA synthetase mRNA. It has been further found that partial suppression of temperature sensitive growth of the alaS mutation can be achieved by independent ribosomal mutations leading to reduced growth rates because of a mutation to antibiotic resistance. Addition of low concentrations of a variety of antibiotics acting at the ribosomal level can also partially revert the temperature-sensitive phenotype of the alaS mutant. Although the possibility cannot be excluded that suppression is due to the stabilisation or activation of the mutant enzyme by some indirect effect of the suppressor ribosomal mutations, the following working hypothesis is favoured at the moment: It is assumed that limitation of the aminoacyl-tRNA synthetase activity in a certain range of the restrictive temperature causes growth inhibition by the premature termination of polypeptide synthesis at the ribosome or by the unbalanced synthesis of the individual cellular proteins under this condition. The mechanism of suppression by ribosomal mutations is proposed to consist of the release of this growth inhibition by the reduction of the rate of polypeptide synthesis, which would keep amino acid incorporation from exceeding the slow charging of tRNA and thus exhausting the pool of charged tRNA. In the suppressor strains, therefore, growth at the semi-restrictive temperature is no longer limited by the aminoacylation of tRNA but by the translational process at the mutated ribosome. This influence of the ribosomal mutation on the speed of translation could be directly or indirectly coupled with an effect on translational fidelity resulting in the prevention of the binding of uncharged or non-cognate charged tRNA or in the tighter binding of peptidyl-tRNA when cognate aminoacyl-tRNA is limiting.

摘要

对核糖体的突变改变抑制温度敏感型丙氨酰 - tRNA合成酶(alaS)突变的生化基础进行了研究。对依赖多聚U的多聚苯丙氨酸合成的测量表明,来自抑制菌株的核糖体活性低于未抑制的氨酰 - tRNA合成酶突变体的核糖体。在这个系统中,未检测到抑制性核糖体的翻译歧义增加。这一事实以及ram - 1突变不能抑制氨酰 - tRNA合成酶突变以及抑制等位基因的存在并未伴随着可测量的丙氨酰 - tRNA合成酶活性改善的发现,都反对抑制可能是由于丙氨酰 - tRNA合成酶mRNA的翻译错误率增加的可能性。进一步发现,由于抗生素抗性突变导致生长速率降低的独立核糖体突变可以实现对alaS突变的温度敏感生长的部分抑制。添加低浓度的多种作用于核糖体水平的抗生素也可以部分恢复alaS突变体的温度敏感表型。虽然不能排除抑制是由于抑制性核糖体突变的某些间接作用使突变酶稳定化或激活的可能性,但目前倾向于以下工作假设:假定在一定范围的限制温度下,氨酰 - tRNA合成酶活性的限制通过核糖体上多肽合成的过早终止或在这种情况下单个细胞蛋白质的不平衡合成导致生长抑制。核糖体突变的抑制机制被认为是由多肽合成速率的降低释放这种生长抑制组成,这将使氨基酸掺入不会超过tRNA的缓慢充电,从而耗尽带电tRNA池。因此,在抑制菌株中,半限制温度下的生长不再受tRNA氨酰化的限制,而是受突变核糖体上的翻译过程的限制。核糖体突变对翻译速度的这种影响可能直接或间接与对翻译保真度的影响相关联,导致防止未充电或非同源带电tRNA的结合,或者当同源氨酰 - tRNA受到限制时肽基 - tRNA的结合更紧密。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验