Varma A, Palsson B O
Department of Chemical Engineering, University of Michigan, Ann Arbor 48109.
Appl Environ Microbiol. 1994 Oct;60(10):3724-31. doi: 10.1128/aem.60.10.3724-3731.1994.
Flux balance models of metabolism use stoichiometry of metabolic pathways, metabolic demands of growth, and optimality principles to predict metabolic flux distribution and cellular growth under specified environmental conditions. These models have provided a mechanistic interpretation of systemic metabolic physiology, and they are also useful as a quantitative tool for metabolic pathway design. Quantitative predictions of cell growth and metabolic by-product secretion that are experimentally testable can be obtained from these models. In the present report, we used independent measurements to determine the model parameters for the wild-type Escherichia coli strain W3110. We experimentally determined the maximum oxygen utilization rate (15 mmol of O2 per g [dry weight] per h), the maximum aerobic glucose utilization rate (10.5 mmol of Glc per g [dry weight] per h), the maximum anaerobic glucose utilization rate (18.5 mmol of Glc per g [dry weight] per h), the non-growth-associated maintenance requirements (7.6 mmol of ATP per g [dry weight] per h), and the growth-associated maintenance requirements (13 mmol of ATP per g of biomass). The flux balance model specified by these parameters was found to quantitatively predict glucose and oxygen uptake rates as well as acetate secretion rates observed in chemostat experiments. We have formulated a predictive algorithm in order to apply the flux balance model to describe unsteady-state growth and by-product secretion in aerobic batch, fed-batch, and anaerobic batch cultures. In aerobic experiments we observed acetate secretion, accumulation in the culture medium, and reutilization from the culture medium. In fed-batch cultures acetate is cometabolized with glucose during the later part of the culture period.(ABSTRACT TRUNCATED AT 250 WORDS)
代谢通量平衡模型利用代谢途径的化学计量学、生长的代谢需求以及最优化原则,来预测特定环境条件下的代谢通量分布和细胞生长情况。这些模型为系统代谢生理学提供了一种机制性解释,同时也是代谢途径设计的一种有用的定量工具。通过这些模型可以获得可通过实验验证的细胞生长和代谢副产物分泌的定量预测结果。在本报告中,我们通过独立测量确定了野生型大肠杆菌菌株W3110的模型参数。我们通过实验确定了最大氧利用率(每克[干重]每小时15毫摩尔O2)、最大好氧葡萄糖利用率(每克[干重]每小时10.5毫摩尔葡萄糖)、最大厌氧葡萄糖利用率(每克[干重]每小时18.5毫摩尔葡萄糖)、非生长相关维持需求(每克[干重]每小时7.6毫摩尔ATP)以及生长相关维持需求(每克生物量13毫摩尔ATP)。发现由这些参数指定的通量平衡模型能够定量预测在恒化器实验中观察到的葡萄糖和氧气摄取率以及乙酸分泌率。我们制定了一种预测算法,以便应用通量平衡模型来描述好氧分批培养、补料分批培养和厌氧分批培养中的非稳态生长和副产物分泌。在好氧实验中,我们观察到乙酸分泌、在培养基中的积累以及从培养基中的再利用。在补料分批培养中,乙酸在培养后期与葡萄糖共同代谢。(摘要截短至250字)