Suppr超能文献

用于预测阴道生态系统中微生物相互作用的混合效应模型。

Mixed-effect models for predicting microbial interactions in the vaginal ecosystem.

作者信息

Ross R A, Lee M L, Delaney M L, Onderdonk A B

机构信息

Channing Laboratory, Harvard Medical School, Boston, Massachusetts.

出版信息

J Clin Microbiol. 1994 Apr;32(4):871-5. doi: 10.1128/jcm.32.4.871-875.1994.

Abstract

Three statistical models that predict microbial interactions within the vaginal environment are presented. A large data set was assembled from in vivo studies describing the healthy vaginal environment, and the data set was analyzed to determine whether statistical models which would accurately predict the interactions of the microflora in this environment could be formulated. During assembly of the data set, two new variables were defined and were added to the data set, that is, cycle (sequence of menstrual cycle) and flow stage (subdivision of cycle determined by day of menstrual cycle). Concentrations of total aerobic (includes facultative) bacteria, total anaerobic bacteria, and a Corynebacterium sp. were identified by correlation analysis as variables with significant predictors. By using a regression method with a backward elimination procedure, significant predictors of these outcome variables were identified as the concentrations of Lactobacillus spp., anaerobic Streptococcus spp., and Staphylococcus spp., respectively. For all three outcome variables, pH and flow stage were also identified as significant independent variables. Because some of the data in the data set are repeated measurements for a subject, a mixed-effect model that accounts for the random effects of repeated-measurement data fit best the data set for predicting interactions between various members of the vaginal microflora. The predictive accuracies of the three models were tested by a comparison of model-predicted outcome-variable values with actual mean in vivo outcome-variable values. From these results, we concluded that it is possible to accurately predict vaginal microflora interactions by using a mixed-effect modeling system. The application of this type of modeling strategy and its future use are discussed.

摘要

本文提出了三种预测阴道环境中微生物相互作用的统计模型。我们从描述健康阴道环境的体内研究中收集了一个大型数据集,并对该数据集进行分析,以确定是否能够构建出准确预测该环境中微生物群落相互作用的统计模型。在数据集的收集过程中,定义了两个新变量并将其添加到数据集中,即周期(月经周期的序列)和流量阶段(由月经周期的天数确定的周期细分)。通过相关性分析确定,总需氧菌(包括兼性菌)、总厌氧菌和一种棒状杆菌属的浓度是具有显著预测因子的变量。通过使用带有向后消除程序的回归方法,分别确定这些结果变量的显著预测因子为乳酸杆菌属、厌氧链球菌属和葡萄球菌属的浓度。对于所有三个结果变量,pH值和流量阶段也被确定为显著的独立变量。由于数据集中的一些数据是对同一受试者的重复测量,一个考虑了重复测量数据随机效应的混合效应模型最适合该数据集,用于预测阴道微生物群落各成员之间的相互作用。通过将模型预测的结果变量值与实际体内平均结果变量值进行比较,测试了这三种模型的预测准确性。根据这些结果,我们得出结论,使用混合效应建模系统可以准确预测阴道微生物群落的相互作用。本文还讨论了这种建模策略的应用及其未来用途。

相似文献

2
Quantitative bacteriology of the vaginal flora.阴道菌群的定量细菌学
J Infect Dis. 1977 Aug;136(2):271-7. doi: 10.1093/infdis/136.2.271.
4
Anaerobic microflora of the vagina in children.儿童阴道的厌氧微生物区系
Am J Obstet Gynecol. 1978 Aug 15;131(8):853-6. doi: 10.1016/s0002-9378(16)33130-1.
5
Bacterial flora of the vagina: quantitative study.阴道细菌菌群:定量研究。
Rev Infect Dis. 1984 Mar-Apr;6 Suppl 1:S67-72. doi: 10.1093/clinids/6.supplement_1.s67.
7
Quantitative microflora of the vagina.阴道微生物定量分析
Am J Obstet Gynecol. 1977 Jan 1;127(1):80-5. doi: 10.1016/0002-9378(77)90318-0.
10
Effect of Candida albicans infection and clotrimazole treatment on vaginal microflora in vitro.
Obstet Gynecol. 1995 Dec;86(6):925-30. doi: 10.1016/0029-7844(95)00318-l.

本文引用的文献

1
Sequential vaginal cultures from normal young women.正常年轻女性的连续阴道培养物。
J Clin Microbiol. 1980 May;11(5):479-84. doi: 10.1128/jcm.11.5.479-484.1980.
3
Identification of Gardnerella (Haemophilus) vaginalis.阴道加德纳菌(阴道嗜血杆菌)的鉴定。
J Clin Microbiol. 1982 Jan;15(1):19-24. doi: 10.1128/jcm.15.1.19-24.1982.
4
Physiology and ecology of the vagina.
Scand J Infect Dis Suppl. 1983;40:31-5.
5
Bacteriology of the vagina.阴道细菌学
Scand J Urol Nephrol Suppl. 1984;86:23-39.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验