Suppr超能文献

使用概率神经网络对染色体进行分类。

Classification of chromosomes using a probabilistic neural network.

作者信息

Sweeney W P, Musavi M T, Guidi J N

机构信息

University of Maine, Department of Electrical and Computer Engineering, Orono 04469-5708.

出版信息

Cytometry. 1994 May 1;16(1):17-24. doi: 10.1002/cyto.990160104.

Abstract

This paper describes the application of a probabilistic neural network (PNN) to the classification of normal human chromosomes. The inputs to the network are 30 different features extracted from each chromosome in digitized images of metaphase spreads. The output is 1 of 24 different classes of chromosomes (the 22 autosomes plus the sex chromosomes X and Y). An updating procedure was implemented to take advantage of the fact that in a normal somatic cell only two chromosomes can be assigned to each class. The network has been tested using the Copenhagen, Edinburgh, and Philadelphia databases of digitized images of human chromosomes. The recognition rates achieved in this study are superior to those reported using either the maximum likelihood or back propagation neural network techniques.

摘要

本文描述了概率神经网络(PNN)在正常人类染色体分类中的应用。该网络的输入是从中期染色体铺展的数字化图像中提取的每个染色体的30种不同特征。输出是24种不同染色体类别中的一种(22对常染色体加上性染色体X和Y)。实施了一种更新程序,以利用正常体细胞中每个类别只能分配两条染色体这一事实。该网络已使用哥本哈根、爱丁堡和费城人类染色体数字化图像数据库进行了测试。本研究中实现的识别率优于使用最大似然或反向传播神经网络技术所报告的识别率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验