Suppr超能文献

数字X光片中的肺部分割

Lung segmentation in digital radiographs.

作者信息

Pietka E

机构信息

University Hospital of Geneva, Medical Imaging Unit, Switzerland.

出版信息

J Digit Imaging. 1994 May;7(2):79-84. doi: 10.1007/BF03168427.

Abstract

Computer-assisted interpretation of computer radiography (CR) chest images including lung nodules detection, quantitative texture analysis, etc requires a lung delineation algorithm that restricts the area to be analyzed. This report presents a new lung-segmentation technique. It is performed in three phases. First, a histogram analysis finds a threshold value that eliminates the densest anatomic regions. Then, a gradient analysis separates the lungs from parts of thorax attached to the lungs that have not been removed in the previous phase. A smoothing routine yields the final image. By imposing a testing condition that results from the histogram analysis, underexposed images are not being considered. If being segmented, they exhibit a significant lung penetration. The test increases the accuracy of the procedure and makes it safer for an unsupervised application. The segmentation procedure has been implemented together with preprocessing functions in our clinical picture archiving and communication system.

摘要

计算机辅助解读计算机X线摄影(CR)胸部图像,包括肺结节检测、定量纹理分析等,需要一种肺轮廓描绘算法来限定待分析区域。本报告介绍了一种新的肺分割技术。该技术分三个阶段进行。首先,进行直方图分析以找到一个阈值,该阈值可消除密度最高的解剖区域。然后,进行梯度分析,将肺与在前一阶段未被去除的附着于肺的胸部部分分开。一个平滑程序生成最终图像。通过施加由直方图分析得出的测试条件,未充分曝光的图像不被考虑。如果对其进行分割,它们会呈现出明显的肺部穿透。该测试提高了程序的准确性,并使其在无监督应用中更安全。该分割程序已与预处理功能一起在我们的临床图像存档与通信系统中实现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验