Suppr超能文献

数字断层合成胸部 CT 中的自动肺分割。

Automated lung segmentation in digital chest tomosynthesis.

机构信息

Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA.

出版信息

Med Phys. 2012 Feb;39(2):732-41. doi: 10.1118/1.3671939.

Abstract

PURPOSE

The purpose of this study was to develop an automated lung segmentation method for computerized detection of lung nodules in digital chest tomosynthesis.

METHODS

The authors collected 45 digital tomosynthesis scans and manually segmented reference lung regions in each scan to assess the performance of the method. The authors automated the technique by calculating the edge gradient in an original image for enhancing lung outline and transforming the edge gradient image to polar coordinate space. The authors then employed a dynamic programming technique to delineate outlines of the unobscured lungs in the transformed edge gradient image. The lung outlines were converted back to the original image to provide the final segmentation result. The above lung segmentation algorithm was first applied to the central reconstructed tomosynthesis slice because of the absence of ribs overlapping lung structures. The segmented lung in the central slice was then used to guide lung segmentation in noncentral slices. The authors evaluated the segmentation method by using (1) an overlap rate of lung regions, (2) a mean absolute distance (MAD) of lung borders, (3) a Hausdorff distance of lung borders between the automatically segmented lungs and manually segmented reference lungs, and (4) the fraction of nodules included in the automatically segmented lungs.

RESULTS

The segmentation method achieved mean overlap rates of 85.7%, 88.3%, and 87.0% for left lungs, right lungs, and entire lungs, respectively; mean MAD of 4.8, 3.9, and 4.4 mm for left lungs, right lungs, and entire lungs, respectively; and mean Hausdorrf distance of 25.0 mm, 25.5 mm, and 30.1 mm for left lungs, right lungs, and entire lungs, respectively. All of the nodules inside the reference lungs were correctly included in the segmented lungs obtained with the lung segmentation method.

CONCLUSIONS

The method achieved relatively high accuracy for lung segmentation and will be useful for computer-aided detection of lung nodules in digital tomosynthesis.

摘要

目的

本研究旨在开发一种用于数字断层合成计算机检测肺结节的自动肺分割方法。

方法

作者收集了 45 例数字断层合成扫描图像,并对每例扫描图像手动分割参考肺区,以评估该方法的性能。作者通过计算原始图像中的边缘梯度来实现该技术的自动化,以增强肺轮廓,并将边缘梯度图像转换到极坐标空间。然后,作者采用动态规划技术在变换后的边缘梯度图像中描绘未遮挡肺的轮廓。将肺轮廓转换回原始图像以提供最终的分割结果。由于肋骨不重叠肺结构,首先将上述肺分割算法应用于中心重建断层合成切片。然后,使用中心切片中的分割肺来指导非中心切片中的肺分割。作者通过以下 4 种方法评估了分割方法:(1)肺区域的重叠率;(2)肺边界的平均绝对距离(MAD);(3)自动分割肺与手动分割参考肺之间的肺边界 Hausdorff 距离;(4)自动分割肺中包含的结节分数。

结果

该分割方法分别实现了左肺、右肺和全肺的平均重叠率为 85.7%、88.3%和 87.0%;左肺、右肺和全肺的平均 MAD 分别为 4.8、3.9 和 4.4mm;左肺、右肺和全肺的平均 Hausdorrf 距离分别为 25.0、25.5 和 30.1mm。参考肺内的所有结节均正确地包含在通过肺分割方法获得的分割肺中。

结论

该方法实现了相对较高的肺分割精度,将有助于数字断层合成中的肺结节计算机辅助检测。

相似文献

5
Adaptive border marching algorithm: automatic lung segmentation on chest CT images.自适应边界行进算法:胸部CT图像上的自动肺部分割
Comput Med Imaging Graph. 2008 Sep;32(6):452-62. doi: 10.1016/j.compmedimag.2008.04.005. Epub 2008 Jun 2.

引用本文的文献

本文引用的文献

10
Minimal shape and intensity cost path segmentation.最小形状和强度代价路径分割
IEEE Trans Med Imaging. 2007 Aug;26(8):1115-29. doi: 10.1109/TMI.2007.896924.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验