Suppr超能文献

Response mechanism of polymer membrane-based potentiometric polyion sensors.

作者信息

Fu B, Bakker E, Yun J H, Yang V C, Meyerhoff M E

机构信息

Department of Chemistry and College of Pharmacy, University of Michigan, Ann Arbor 48109.

出版信息

Anal Chem. 1994 Jul 15;66(14):2250-9. doi: 10.1021/ac00086a009.

Abstract

The potentiometric response mechanism of a previously reported polymer membrane-based electrode sensitive to the polyanion heparin is established. Based on transport and extraction studies, the heparin response is attributed to a nonequilibrium change in the phase boundary potential at the sample/membrane interface. While true equilibrium polyion response, obtained for low heparin concentrations only after very long equilibration times (> 20 h), yields the expected Nernstian response slope of < 1 mV/decade, the observed large and reproducible EMF response to clinically relevant heparin concentrations (approximately 10(-7) M) during typical measurement periods (2-5 min) is ascribed to a steady-state kinetic process defined by the flux of the polyion both to the surface and into the bulk of the polymer membrane. A model describing this nonequilibrium response is presented. With this model, the uniqueness of the polymer membrane composition (e.g., very low plasticizer content, strictly controlled cationic site concentration, etc.) required to achieve analytically useful heparin response becomes clear. Practical working conditions and limitations of the sensor are discussed. To support the generality of the steady-state model proposed, corresponding EMF response data for a newly developed membrane electrode sensitive to a polycationic protein (protamine) are also presented. It is shown that the protamine-responsive membrane electrode appears to operate via the exact same kinetic mechanism as the heparin sensing system.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验