Sanders M A, Salisbury J L
Department of Biochemistry and Molecular Biology, Mayo Clinic Foundation, Rochester, Minnesota 55905.
J Cell Biol. 1994 Mar;124(5):795-805. doi: 10.1083/jcb.124.5.795.
Previously, we reported that flagellar excision in Chlamydomonas reinhardtii is mediated by an active process whereby microtubules are severed at select sites within the flagellar-basal body transition zone (Sanders, M. A., and J. L. Salisbury. 1989. J. Cell Biol. 108:1751-1760). At the time of flagellar excision, stellate fibers of the transition zone contract and displace the microtubule doublets of the axoneme inward. The resulting shear force and torsional load generated during inward displacement leads to microtubule severing immediately distal to the central cylinder of the transition zone. In this study, we have used a detergent-extracted cell model of Chlamydomonas that allows direct experimental access to the molecular machinery responsible for microtubule severing without the impediment of the plasma membrane. We present four independent lines of experimental evidence for the essential involvement of centrin-based stellate fibers of the transition zone in the process of flagellar excision: (a) Detergent-extracted cell models excise their flagella in response to elevated, yet physiological, levels of free calcium. (b) Extraction of cell models with buffers containing the divalent cation chelator EDTA leads to the disassembly of centrin-based fibers and to the disruption of transition zone stellate fiber structure. This treatment results in a complete loss of flagellar excision competence. (c) Three separate anti-centrin monoclonal antibody preparations, which localize to the stellate fibers of the transition zone, specifically inhibit contraction of the stellate fibers and block calcium-induced flagellar excision, while control antibodies have no inhibitory effect. Finally, (d) cells of the centrin mutant vfl-2 (Taillon, B., S. Adler, J. Suhan, and J. Jarvik. 1992. J. Cell Biol. 119:1613-1624) fail to actively excise their flagella following pH shock in living cells or calcium treatment of detergent-extracted cell models. Taken together, these observations demonstrate that centrin-based fiber contraction plays a fundamental role in microtubule severing at the time of flagellar excision in Chlamydomonas.
此前,我们报道莱茵衣藻鞭毛切除是由一个活跃过程介导的,在此过程中微管在鞭毛-基体过渡区的特定部位被切断(桑德斯,M. A.,和J. L. 索尔兹伯里。1989年。《细胞生物学杂志》108:1751 - 1760)。在鞭毛切除时,过渡区的星状纤维收缩并将轴丝的微管双联体向内移位。向内移位过程中产生的剪切力和扭转载荷导致微管在过渡区中心圆柱体的紧邻远端被切断。在本研究中,我们使用了一种经去污剂处理的衣藻细胞模型,该模型能够直接对负责微管切断的分子机制进行实验研究,而不受质膜干扰。我们提供了四条独立的实验证据,证明过渡区基于中心蛋白的星状纤维在鞭毛切除过程中起着至关重要作用:(a)经去污剂处理的细胞模型在游离钙水平升高但仍处于生理水平时切除其鞭毛。(b)用含有二价阳离子螯合剂乙二胺四乙酸(EDTA)的缓冲液处理细胞模型会导致基于中心蛋白的纤维解聚,并破坏过渡区星状纤维结构。这种处理导致鞭毛切除能力完全丧失。(c)三种分别定位到过渡区星状纤维的抗中心蛋白单克隆抗体制剂,特异性抑制星状纤维收缩并阻断钙诱导的鞭毛切除,而对照抗体没有抑制作用。最后,(d)中心蛋白突变体vfl - 2(泰隆,B.,S. 阿德勒,J. 苏汉,和J. 贾维克。1992年。《细胞生物学杂志》119:1613 - 1624)的细胞在活细胞中经pH冲击或对经去污剂处理的细胞模型进行钙处理后,无法主动切除其鞭毛。综上所述,这些观察结果表明,基于中心蛋白的纤维收缩在衣藻鞭毛切除时微管切断过程中起着基本作用。