Suppr超能文献

影响翻译准确性的大肠杆菌23S rRNA肽基转移酶区域的突变。

Mutations in the peptidyl transferase region of E. coli 23S rRNA affecting translational accuracy.

作者信息

Gregory S T, Lieberman K R, Dahlberg A E

机构信息

Section of Biochemistry, Brown University, Providence, RI 02912.

出版信息

Nucleic Acids Res. 1994 Feb 11;22(3):279-84. doi: 10.1093/nar/22.3.279.

Abstract

We have produced mutations in a cloned Escherichia coli 23S rRNA gene at positions G2252 and G2253. These sites are protected in chemical footprinting studies by the 3' terminal CCA of P site-bound tRNA. Three possible base changes were introduced at each position and the mutations produced a range of effects on growth rate and translational accuracy. Growth of cells bearing mutations at 2252 was severely compromised while the only mutation at 2253 causing a marked reduction in growth rate was a G to C transversion. Most of the mutations affected translational accuracy, causing increased readthrough of UGA, UAG and UAA nonsense mutations as well as +1 and -1 frameshifting in a lacZ reporter gene in vivo. C2253 was shown to act as a suppressor of a UGA nonsense mutation at codon 243 of the trpA gene. The C2253 mutation was also found not to interact with alleles of rpsL coding for restrictive forms of ribosomal protein S12. These results provide further evidence that nucleotides localized to the P site in the 50S ribosomal subunit influence the accuracy of decoding in the ribosomal A site.

摘要

我们在克隆的大肠杆菌23S rRNA基因的G2252和G2253位点产生了突变。在化学足迹研究中,这些位点受到P位点结合的tRNA的3'末端CCA的保护。在每个位点引入了三种可能的碱基变化,这些突变对生长速率和翻译准确性产生了一系列影响。携带2252位点突变的细胞生长严重受损,而2253位点唯一导致生长速率显著降低的突变是G到C的颠换。大多数突变影响翻译准确性,导致体内UGA、UAG和UAA无义突变的通读增加,以及lacZ报告基因中的+1和-1移码。C2253被证明可作为trpA基因第243密码子处UGA无义突变的抑制子。还发现C2253突变与编码核糖体蛋白S12限制性形式的rpsL等位基因不相互作用。这些结果进一步证明,定位于50S核糖体亚基P位点的核苷酸会影响核糖体A位点的解码准确性。

相似文献

1
Mutations in the peptidyl transferase region of E. coli 23S rRNA affecting translational accuracy.
Nucleic Acids Res. 1994 Feb 11;22(3):279-84. doi: 10.1093/nar/22.3.279.
3
A base pair between tRNA and 23S rRNA in the peptidyl transferase centre of the ribosome.
Nature. 1995 Sep 28;377(6547):309-14. doi: 10.1038/377309a0.
4
UGA suppression by a mutant RNA of the large ribosomal subunit.
Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12309-13. doi: 10.1073/pnas.92.26.12309.
6
Base-pairing between 23S rRNA and tRNA in the ribosomal A site.
Mol Cell. 1999 Nov;4(5):859-64. doi: 10.1016/s1097-2765(00)80395-0.
8
Sites of interaction of the CCA end of peptidyl-tRNA with 23S rRNA.
Proc Natl Acad Sci U S A. 1991 May 1;88(9):3725-8. doi: 10.1073/pnas.88.9.3725.
9
23S rRNA nucleotides in the peptidyl transferase center are essential for tryptophanase operon induction.
J Bacteriol. 2009 Jun;191(11):3445-50. doi: 10.1128/JB.00096-09. Epub 2009 Mar 27.

引用本文的文献

1
A bacterial regulatory uORF senses multiple classes of ribosome-targeting antibiotics.
Elife. 2025 May 29;13:RP101217. doi: 10.7554/eLife.101217.
2
Mapping the in vivo fitness landscape of a tethered ribosome.
Sci Adv. 2023 Apr 28;9(17):eade8934. doi: 10.1126/sciadv.ade8934.
3
Rare ribosomal RNA sequences from archaea stabilize the bacterial ribosome.
Nucleic Acids Res. 2023 Feb 28;51(4):1880-1894. doi: 10.1093/nar/gkac1273.
4
Expansion of the Genetic Code Through the Use of Modified Bacterial Ribosomes.
J Mol Biol. 2022 Apr 30;434(8):167211. doi: 10.1016/j.jmb.2021.167211. Epub 2021 Aug 20.
5
Mutational characterization and mapping of the 70S ribosome active site.
Nucleic Acids Res. 2020 Mar 18;48(5):2777-2789. doi: 10.1093/nar/gkaa001.
6
Fail-safe genetic codes designed to intrinsically contain engineered organisms.
Nucleic Acids Res. 2019 Nov 4;47(19):10439-10451. doi: 10.1093/nar/gkz745.
7
Expanding the Scope of Protein Synthesis Using Modified Ribosomes.
J Am Chem Soc. 2019 Apr 24;141(16):6430-6447. doi: 10.1021/jacs.9b02109. Epub 2019 Apr 5.
8
Ribosome Subunit Stapling for Orthogonal Translation in   .
Angew Chem Weinheim Bergstr Ger. 2015 Oct 19;127(43):12982-12985. doi: 10.1002/ange.201506311. Epub 2015 Aug 26.
9
Ribosome Subunit Stapling for Orthogonal Translation in E. coli.
Angew Chem Int Ed Engl. 2015 Oct 19;54(43):12791-4. doi: 10.1002/anie.201506311. Epub 2015 Aug 26.
10
Expedited quantification of mutant ribosomal RNA by binary deoxyribozyme (BiDz) sensors.
RNA. 2015 Oct;21(10):1834-43. doi: 10.1261/rna.052613.115. Epub 2015 Aug 19.

本文引用的文献

1
Mutations at U2555, a tRNA-protected base in 23S rRNA, affect translational fidelity.
Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):9214-8. doi: 10.1073/pnas.90.19.9214.
2
Functional tRNAs with altered 3' ends.
EMBO J. 1993 Jun;12(6):2559-66. doi: 10.1002/j.1460-2075.1993.tb05911.x.
3
Kinetic impairment of restrictive streptomycin-resistant ribosomes.
Mol Gen Genet. 1984;198(2):90-9. doi: 10.1007/BF00328706.
4
Versatile low-copy-number plasmid vectors for cloning in Escherichia coli.
Gene. 1982 Jun;18(3):335-41. doi: 10.1016/0378-1119(82)90172-x.
6
Ribosomal discrimination of tRNAs.
Nat New Biol. 1971 Dec 29;234(52):261-4. doi: 10.1038/newbio234261a0.
7
Translation of the UGA triplet in vitro by tryptophan transfer RNA's.
J Mol Biol. 1971 Jun 14;58(2):459-68. doi: 10.1016/0022-2836(71)90363-9.
8
Involvement of ribosomal protein L7/L12 in control of translational accuracy.
Proc Natl Acad Sci U S A. 1985 Feb;82(3):717-21. doi: 10.1073/pnas.82.3.717.
9
Nucleotide sequence of the large ribosomal RNA of honeybee mitochondria.
Nucleic Acids Res. 1987 Mar 11;15(5):2388. doi: 10.1093/nar/15.5.2388.
10
Mutant EF-Tu increases missense error in vitro.
Mol Gen Genet. 1986 Oct;205(1):186-8. doi: 10.1007/BF02428051.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验