Verotta D
Department of Pharmacy and Pharmaceutical Chemistry, University of California San Francisco 94143.
J Pharmacokinet Biopharm. 1993 Oct;21(5):609-36. doi: 10.1007/BF01059117.
This paper describes two new methods to solve the following estimation problem. Given n1 noisy measurements (yi1, i = 1,..., n1) of the response of a system to a known input [A1(t) where t indicates time], and n2 noisy measurements (yi2, i = 1,..., n2) of the response of a system to an unknown input [A2(t)], obtain an estimate of A2(t) and K(t) (the unit impulse response function of the system) under the model: [formula: see text] where Eij are independent identically distributed random variables. Both methods use spline functions to represent the unknown functions, and they automatically select the spline functions representing the unknown input and unit impulse response functions. The first method estimates separately the unit impulse response function and the input, recasting the problem in terms of inequality-constrained linear regression. The second method jointly estimates the unit impulse response function and the input function, recasting the problem in terms of inequality-constrained nonlinear regression. Simulated and real data analysis are reported.
本文描述了两种新方法来解决以下估计问题。给定系统对已知输入[A1(t),其中t表示时间]的n1个噪声测量值(yi1,i = 1,…,n1),以及系统对未知输入[A2(t)]的n2个噪声测量值(yi2,i = 1,…,n2),在以下模型下获得A2(t)和K(t)(系统的单位脉冲响应函数)的估计值:[公式:见原文],其中Eij是独立同分布的随机变量。两种方法都使用样条函数来表示未知函数,并且它们会自动选择表示未知输入和单位脉冲响应函数的样条函数。第一种方法分别估计单位脉冲响应函数和输入,将问题重新表述为不等式约束线性回归问题。第二种方法联合估计单位脉冲响应函数和输入函数,将问题重新表述为不等式约束非线性回归问题。文中报告了模拟数据分析和实际数据分析的结果。