Madden F N, Godfrey K R, Chappell M J, Hovorka R, Bates R A
Department of Engineering, University of Warwick, Coventry, United Kingdom.
J Pharmacokinet Biopharm. 1996 Jun;24(3):283-99. doi: 10.1007/BF02353672.
We present results for the comparison of six deconvolution techniques. The methods we consider are based on Fourier transforms, system identification, constrained optimization, the use of cubic spline basis functions, maximum entropy, and a genetic algorithm. We compare the performance of these techniques by applying them to simulated noisy data, in order to extract an input function when the unit impulse response is known. The simulated data are generated by convolving the known impulse response with each of five different input functions, and then adding noise of constant coefficient of variation. Each algorithm was tested on 500 data sets, and we define error measures in order to compare the performance of the different methods.
我们展示了六种反卷积技术比较的结果。我们考虑的方法基于傅里叶变换、系统辨识、约束优化、三次样条基函数的使用、最大熵以及遗传算法。我们通过将这些技术应用于模拟噪声数据来比较它们的性能,以便在单位脉冲响应已知时提取输入函数。模拟数据是通过将已知脉冲响应与五个不同输入函数中的每一个进行卷积,然后添加具有恒定变异系数的噪声生成的。每种算法在500个数据集上进行了测试,并且我们定义了误差度量以比较不同方法的性能。