Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand.
J Biol Chem. 2011 Nov 18;286(46):39882-92. doi: 10.1074/jbc.M111.281675. Epub 2011 Sep 27.
An unresolved question in the bioenergetics of methanogenic archaea is how the generation of proton-motive and sodium-motive forces during methane production is used to synthesize ATP by the membrane-bound A(1)A(o)-ATP synthase, with both proton- and sodium-coupled enzymes being reported in methanogens. To address this question, we investigated the biochemical characteristics of the A(1)A(o)-ATP synthase (MbbrA(1)A(o)) of Methanobrevibacter ruminantium M1, a predominant methanogen in the rumen. Growth of M. ruminantium M1 was inhibited by protonophores and sodium ionophores, demonstrating that both ion gradients were essential for growth. To study the role of these ions in ATP synthesis, the ahaHIKECFABD operon encoding the MbbrA(1)A(o) was expressed in Escherichia coli strain DK8 (Δatp) and purified yielding a 9-subunit protein with an SDS-stable c oligomer. Analysis of the c subunit amino acid sequence revealed that it consisted of four transmembrane helices, and each hairpin displayed a complete Na(+)-binding signature made up of identical amino acid residues. The purified MbbrA(1)A(o) was stimulated by sodium ions, and Na(+) provided pH-dependent protection against inhibition by dicyclohexylcarbodiimide but not tributyltin chloride. ATP synthesis in inverted membrane vesicles lacking sodium ions was driven by a membrane potential that was sensitive to cyanide m-chlorophenylhydrazone but not to monensin. ATP synthesis could not be driven by a chemical gradient of sodium ions unless a membrane potential was imposed. ATP synthesis under these conditions was sensitive to monensin but not cyanide m-chlorophenylhydrazone. These data suggest that the M. ruminantium M1 A(1)A(o)-ATP synthase exhibits all the properties of a sodium-coupled enzyme, but it is also able to use protons to drive ATP synthesis under conditions that favor proton coupling, such as low pH and low levels of sodium ions.
产甲烷古菌生物能量学中尚未解决的一个问题是,在甲烷生成过程中质子动力和钠动力的产生如何被膜结合的 A(1)A(o)-ATP 合酶用于合成 ATP,因为在产甲烷菌中都报告了质子偶联和钠偶联的酶。为了解决这个问题,我们研究了瘤胃甲烷短杆菌 M1 的 A(1)A(o)-ATP 合酶(MbbrA(1)A(o))的生化特性,瘤胃甲烷短杆菌 M1 是瘤胃中的主要产甲烷菌。质子载体和钠离子载体抑制了 M. ruminantium M1 的生长,这表明两种离子梯度对生长都是必不可少的。为了研究这些离子在 ATP 合成中的作用,表达了编码 MbbrA(1)A(o)的 ahaHIKECFABD 操纵子大肠杆菌菌株 DK8(Δatp)并进行了纯化,得到了一个由 9 个亚基组成的 SDS 稳定的 c 寡聚物的蛋白质。对 c 亚基氨基酸序列的分析表明,它由四个跨膜螺旋组成,每个发夹都显示出由相同氨基酸残基组成的完整的 Na(+)-结合特征。纯化的 MbbrA(1)A(o)被钠离子刺激,钠离子提供 pH 依赖性保护,防止二环己基碳二亚胺但不防止三丁基锡氯化物的抑制。在缺乏钠离子的反向膜囊泡中,ATP 合成由膜电位驱动,该电位对氰化 m-氯苯腙敏感,但对莫能菌素不敏感。除非施加膜电位,否则钠离子的化学梯度不能驱动 ATP 合成。在这些条件下,ATP 合成对莫能菌素敏感,但对氰化 m-氯苯腙不敏感。这些数据表明,M. ruminantium M1 A(1)A(o)-ATP 合酶具有钠偶联酶的所有特性,但它也能够在有利于质子偶联的条件下利用质子驱动 ATP 合成,例如低 pH 和低钠离子水平。