Pincus S M, Goldberger A L
Department of Medicine, Beth Israel Hospital, Boston, Massachusetts 02215.
Am J Physiol. 1994 Apr;266(4 Pt 2):H1643-56. doi: 10.1152/ajpheart.1994.266.4.H1643.
Approximate entropy (ApEn) is a recently developed statistic quantifying regularity and complexity that appears to have potential application to a wide variety of physiological and clinical time-series data. The focus here is to provide a better understanding of ApEn to facilitate its proper utilization, application, and interpretation. After giving the formal mathematical description of ApEn, we provide a multistep description of the algorithm as applied to two contrasting clinical heart rate data sets. We discuss algorithm implementation and interpretation and introduce a general mathematical hypothesis of the dynamics of a wide class of diseases, indicating the utility of ApEn to test this hypothesis. We indicate the relationship of ApEn to variability measures, the Fourier spectrum, and algorithms motivated by study of chaotic dynamics. We discuss further mathematical properties of ApEn, including the choice of input parameters, statistical issues, and modeling considerations, and we conclude with a section on caveats to ensure correct ApEn utilization.
近似熵(ApEn)是一种最近开发的用于量化规律性和复杂性的统计量,似乎在各种生理和临床时间序列数据中具有潜在应用。本文重点在于更好地理解近似熵,以促进其正确使用、应用和解释。在给出近似熵的正式数学描述后,我们对应用于两个对比鲜明的临床心率数据集的算法进行了多步骤描述。我们讨论算法的实现与解释,并引入一类广泛疾病动力学的一般数学假设,表明近似熵在检验该假设方面的效用。我们指出近似熵与变异性测量、傅里叶频谱以及受混沌动力学研究启发的算法之间的关系。我们讨论近似熵的进一步数学性质,包括输入参数的选择、统计问题和建模考虑因素,最后我们给出了确保正确使用近似熵的注意事项。